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Abstract: Semi-quantitative elastography is a promising imaging technique to evaluate tissue
stiffness differences, providing data regarding relative stiffness differences between two targets.
The aims of this study were to assess the validity, inter-examiner reliability and variability of semi-
quantitative elastography for calculating strain ratios (SR) in a homogeneous gel phantom in
different locations within the image. A diagnostic accuracy study was performed in a homogeneous
stiffness phantom. Four examiners participated (two novice and two experienced). Each examiner
assessed the SR in two locations. Difference between examiners, variability of measurements, SR
error and absolute error, mean error of the measurements and coefficient of variation were
calculated. The agreement between examiners, validity and variability of measurements were
higher in the central area than the lateral areas of the images. Thus, the experience of the examiner
was relevant for the concordance of the measurements in the lateral areas of the images (SR
difference of 0.14 + 0.05; p < 0.001), but not for the central area (SR difference of 0.05 + 0.02; p > 0.05).
Our data suggested that semi-quantitative elastography is an accurate tool for assessing small
magnitude stiffness differences within the same image in central areas, but the experience of the
examiner is a determinant factor.
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1. Introduction

Ultrasound imaging (US) is a safe, portable, low-cost imaging method for assessing
soft tissues, including skeletal muscle or viscera, and is widely used by different
specialties (e.g., physiotherapists, cardiologists, radiologists, hepatologists or
gynecologists) [1]. During the last years, several studies have developed technical reports
to assess the validity and/or reliability of different imaging procedures [2] and imaging
methods [3,4].

Elastography is a US physics-based imaging technology sensitive to tissue stiffness.
It has been further developed and refined in recent years to make quantitative
assessments of tissue stiffness [5]. Although the first elastography method was “strain
imaging” (which consists of manual compression on the tissue with an ultrasound
transducer), the most recent technology is the “shear wave imaging” method, which
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measures physical tissue displacement generated by shear waves perpendicular to the
direction of the force produced with the transducer [6].

Recent developments have made strain elastography more accurate by providing
real-time feedback regarding the optimal pressure needed, with an indication bar scaled
from 1 to 6 (where 1 is not appropriate and 6 is the most appropriate) [7]. Thus, strain
elastography provides qualitative information based on a color map and semi-
quantitative information expressed as the stiffness comparison between two areas within
the same image. This strain ratio (SR) is calculated as the mean strain in the reference
divided by the mean strain in the target.

Prior evidence assessing SR accuracy by using both strain and shear wave
elastography in calibrated phantoms presented greater accuracy in the shear wave
method [8,9]. One of the reasons explaining these findings is that strain elastography
applies an unknown compression to the tissue and the deformation obtained is relative.
Although shear wave elastography does not depend on the manual compression of the
operator, as in strain elastography, it is more expensive, less accessible and it should be
considered that all US methods are susceptible to be biased by shadowing, reverberation,
clutter artifacts or operator experience [10].

Therefore, considering (1) the accessibility advantages of strain elastography and (2)
inconsistency in semi-quantitative SR results (evaluated methods, the system used and
the position of the reference region of interest) [8], an important preliminary step for semi-
quantitative elastography to be used and interpreted correctly in research or clinical
practice is establishing validity, reliability and variability of measurements.

The rationale for conducting this study is based on two reasons. Firstly, the accuracy
of SR is directly dependent on the magnitude of the stiffness difference between both
targets [11]. Although strain elastography has been widely assessed in phantoms under
optimal conditions previously, these reports compared the stiffness difference between
targets and backgrounds in big magnitudes ranging from 11-55 kPa [8-11]. However, a
recent study assessing stiffness differences between active and latent myofascial trigger
points (MTrP) with control points within the same muscle showed smaller differences
than those assessed in vitro (ranging from 0.04-2.76 kPa) [12]. Therefore, further research
assessing the accuracy of SR calculation in tissues with similar stiffness is needed.
Secondly, the influence of the examiners’ experience for assessing SR is not consistent
[8,11,13].

The aims of this study were to determine semi-quantitative elastography SR validity,
inter-examiner reliability and variability of measurements considering different locations
within the images and the operators’ experience using a phantom with homogeneous
stiffness (since homogeneous tissues are characterized by zero stiffness difference) under
optimal conditions.

2. Materials and Methods
2.1. Study Design

This is a diagnostic accuracy study which was conducted between September 2020
and November 2020 in a private university located in Madrid (Spain), which consists of a
construct validity, variability of measurement and inter-examiner reliability analysis. This
type of study focuses on judgement based on the accumulation of evidence using a specific
measuring instrument (e.g., semi-quantitative elastography SR).

This methodology requires assessing the relationship between the evaluated target
and a variable score (an homogeneous stiff gel phantom with known SR (SR = 1)) to be
known to be related to the construct measured by the instrument for calculating the
construct validity, performing repeated measurements to the same target at different
points in time to calculate the variability of measurement and analyzing the equivalence
of ratings obtained by different observers with different experience levels to calculate the
inter-examiner reliability [14].
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This study followed the Standards for Reporting of Diagnostic Accuracy Studies
(STARD) guidelines and checklist [15]. No ethics committee approval was needed since
neither animals nor humans were involved for this research.

2.2. Imaging Acquisition Procedures

A SonoSite Blue Phantom™ (Sarasota, FL, USA) Vascular Access BPO100 with
homogeneous stiffness was placed on a rigid table. A single model was chosen since SR =
1 for all homogeneous phantoms. All images were acquired with an Alpinion eCube i8
(Anyang-si, Gyeonggi-do, Ltd., Korea) with a 4 cm width linear transducer E8-PB-L3-12T
(frequency bandwidth 3-12 MHz). A linear transducer was chosen since convex probes
generally have higher intra-observer variability [11].

Room light, temperature and all the US parameters were set under the same
conditions for both examiners. Frequency was set to 12.0 MHz, gain to 55 dB, dynamic
range to 85, brightness to 17 and depth to 4 cm. To ensure optimal sound wave incidence,
the transducer was placed perpendicular to the surface of the phantom locating a long-
axis image of the internal cylindrical structure while avoiding its inclination and capturing
the lumen of the cylinder with the maximum amplitude throughout the image (Figure 1a).

This US equipment shows a 1 to 6 scale bar in the upper-left part of the image
regarding the quality of the applied pressure (uniformity of the compression in all areas)
to optimize the elastography measurement. Therefore, the transducer pressure was
carefully calculated according to this scale to apply the optimal pressure during the
obtainment of all the images (Figure 1b).

Figure 1. (A) Ultrasound transducer placement over the phantom. (B) Ultrasound image showing the phantom and
measuring area (pink) above the internal artificial vessel.

A total of four examiners participated in this procedure; two were experienced (10
years of practice in the use of US imaging) and two were novice (1 year of practice). All
examiners performed the transducer placement and each captured 50 images as
described. Acquisitions were performed in 5 series of 10 captures with 1 min difference
between captures and 30 min difference between series.

2.3. Measurement Assessment Procedures

Once captured, all the images were assessed using offline measurement tools of the
US equipment to calculate the SR. Relative SRs were calculated as the stiffness of the
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reference area divided by the stiffness of the comparator area. Two different SRs were
calculated as follows (Figure 2):

)

Lateral areas of the image: First, the caliper was used to measure 1 cm from the top
right corner of the image to the left. Then the area selector tool was utilized to contour
a rectangle with 1 cm width and a height equal to the distance between the most
superficial limit of the phantom to the most superficial limit of the cylindrical
structure. Finally, another rectangle with same measurements (height and width)
was placed in the top left corner of the image to obtain the SR.

Central areas of the image: Within the central 2 cm that were not included in the
previous measurement, the distance from the surface of the phantom and the upper
limit of the cylindrical structure was divided by 2. Following this, a rectangle was
contoured with a width of 2 cm and the upper half of the distance previously
calculated from the surface to the fake vessel. Finally, the SR between the upper
rectangle and the lower rectangle was calculated.

All the measurements were performed by the same operator with 10 years of

experience. Every image was coded to blind the rater using alphanumerical codes in a
randomized order.
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Figure 2. Strain ratio (SR) calculation of lateral and central areas. Central area 1 (reference) was compared with Central
area 2 (target). Lateral area 1 (reference) was compared with Lateral area 2 (target).

2.4. Statistical Analysis

Data analysis was conducted with the Statistical Package for the Social Science (SPSS)

Version 21 for Mac OS. Normal distribution of the SR data was verified using the Shapiro-
Wilk test. Inter-examiner reliability of SR calculation was assessed by calculating the mean
of the measurements with the upper and lower limits (95% CI) in terms of examiner
experience and taking the mean difference between examiners (DBE = SR scored by the
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experienced examiner — SR scored by the novice examiner). Variability of the
measurements (SoM% = standard deviation of the error x 100) and validity was also
assessed, taking the examiner experience into account by calculating the mean error (E =
known SR - SR obtained by the examiner = 1 - SR obtained by the examiner), the mean
absolute error (AE = absolute value of E), the mean error of the measurements (MEM =
(mean AE of the experienced examiner + mean AE of the novice examiner)/2), the mean
percent error (PE% = AE/mean error of the measurements x100) and the mean coefficient
of variation (CV% = Standard Deviation/mean). All the analyses were performed for both
SRs calculated in the lateral areas and center of the images. Student’s t-test for
independent samples was utilized to determine examiners, location areas and reference
differences. All tests were two-tailed and p-values < 0.05 considered significant.

3. Results

A total of 200 images were captured and included for analysis, 50 per experienced
examiner and 50 per novice examiner. From these 200 images, 200 measurements were
obtained from the lateral areas and 200 measurements from the central area of the images.

Table 1 shows inter-examiner reliability (agreement between two examiners
expressed as the difference between their measurements to obtain information regarding
the extent to which the results can be reproduced under the same conditions) and
instrument variability data of SR calculations (considered as the extent to which
measurements diverge from the average value). In general, the agreement between
examiners and variability of measurements was higher in the central area than in the
lateral areas of the images (the difference between examiners for each location ranged
between 0.00-0.13 and 0.00-0.01, respectively). Thus, the experience of the examiner was
relevant for the concordance of the measurements in the lateral areas of the images (p <
0.05), but not for the central area (p > 0.05).

Table 1. Inter-examiner reliability and variability of semi-quantitative elastography stiffness ratio measurements.

Examiner 1 Examiner 2 Examiner 3 Examiner 4
(Experienced) (Experienced) (Novice) (Novice)
(n=50Images) (n=50Images) (n =50 Images) (n=>50 Images)
Lateral areas of the image

SR obtained * 0.96 0.98 1.09 1.10
95% CI (Lower; upper limits) 0.92;1.00 0.90; 1.05 1.04;1.14 1.03;1.16
Variability of the measurements (%) 14.75 17.50 17.40 15.42
0.01+£0.042 0.11£0.05 4+
Difference between examiners 0.12 £ 0.03 bt 0.12+£0.04 ¢t
0.13 £0.04 <t 0.00£0.04 ¢
Central area of the image
SR obtained 0.97 0.97 0.96 0.97
95% CI 0.95; 0.98 0.95; 0.99 0.94; 0.98 0.94; 1.00
Variability of the measurements (%) 5.61 5.38 6.94 7.80
0.00+£0.012 0.01+0.014
Difference between examiners 0.00+0.01" 0.00+0.01 ¢
0.00 £0.02 0.01£0.02 ¢
Differences between measurement locations
SR difference 0.00 +0.02 0.00 +0.04 0.13+0.02 % 0.11+0.03 *

a Examiner 1-Examiner 2; ® Examiner 1-Examiner 3; ¢ Examiner 1-Examiner 4; ¢ Examiner 2-Examiner 3; ¢ Examiner 2—
Examiner 4; f Examiner 3—Examiner 4; * Significant differences between measurements in the lateral areas and the central
area (p < 0.001); * Significant differences between examiners were found (p < 0.05).
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Like reliability, validity is another concept used to evaluate the quality research. Even
if an instrument shows excellent reliability and results are reproducible, they might not
be correct. Therefore, validity provides information regarding the accuracy of one
instrument comparing a known value with the obtained value. Validity estimates of semi-
quantitative elastography for calculating SR within the same image are reported in Table
2. In general, the experience level of the examiner does not seem to be an influential factor
since the error and absolute error differences showed no significant differences between
novice and experienced examiners (p > 0.05). However, the mean error of measurements
was significantly higher (p < 0.001) in the lateral areas compared to the central area of the
image (0.14 + 0.05 and 0.05 + 0.02 respectively). SR calculations of the experienced and
novice examiners in the central area showed no statistically significant differences with
the known reference (p > 0.05). Both novice examiners showed significant differences
between the known SR and their measurements (p < 0.001), unlike the experienced
examiners (p > 0.05).

Table 2. Validity of semi-quantitative elastography for calculating stiffness ratios within the same image.

Examiner 4
(Novice)
(n =50 Images)

Examiner 3
(Novice)
(n =50 Images)

Examiner 2
(Experienced) (Experienced)
(n =50 Images) (n =50 Images)

Examiner 1

Lateral areas of the image

SR obtained 0.96 0.98 1.09 *t 1.10 *t
Error 0.03 +0.14 0.02+0.17 0.09+0.17 0.10+0.15
Absolute Error 0.11 £ 0.09 0.14 £ 0.08 0.15+0.12 0.14 £ 0.06
Coefficient of Variation (%) 0.14 0.17 0.15 0.13
Percent Error (%) 11.80 14.28 15.16 12.72
Mean Error of Measurements 0.14 £0.05*
Central areas of the image
SR obtained 0.97 0.97 0.96 0.97
Error 0.02 +0.05 0.03 +0.06 0.03 £0.06 0.04 +0.06
Absolute Error 0.04 +0.03 0.05+0.03 0.05+0.05 0.06 +0.03
Coefficient of Variation (%) 0.05 0.06 0.06 0.06
Percent Error (%) 4.89 5.15 5.52 6.18
Mean Error of Measurements 0.05+0.02*

* Significant differences between lateral areas and central areas (p < 0.001); * Significant differences with reference SR were

found (p <0.001).

4. Discussion

This study assessed the reliability, variability of measurements and validity of semi-
quantitative elastography SR calculation under optimal conditions (controlling the 90°
transducer position and pressure by using as reference a cylindrical mimicking vessel)
considering the experience level of the examiners. In general, reliability, variability of
measurements and validity of semi-quantitative elastography SR calculation were
acceptable. Elastography could be one of the most important technological breakthroughs
in the field of ultrasound imaging (since development of Doppler imaging or Panoramic
US) including the main advantages of US compared to other imaging techniques (e.g., low
cost, short examination time, noninvasiveness and accessibility) [16].

After an extensive literature search, several recently published studies were found
that assessed the reliability estimates for elastography in different soft tissues structures,
[17] including nerves [18], muscles [19], tendons [20,21] and arteries [22]. Features were
assessed with quantitative elastography (including transverse velocity, transverse
stiffness, cranio-caudal velocity and cranio-caudal stiffness, showing a poor repeatability
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of measurements with wide limits of agreement) and semi-quantitative elastography
assessing SRs [8,9].

Previous phantom studies [8,11] reported that qualitative, semi-quantitative and
quantitative data collected with strain and shear wave elastography can classify the
targets as harder or softer than backgrounds properly. However, SRs were more accurate
in shear wave elastography compared to strain. Aligned with this study, our results
showed central areas of the images to be more accurate, reliable and stable than lateral
areas for calculating SR. In addition, the influence of the examiner experience was
controversial [11,13]. We found lower SR inter-examiner reliability and validity for novice
examiners once the region of interest was focused on lateral areas. Two possible reasons
explaining these phenomena could be the higher number of cross-sound waves in the
middle of the transducer, yielding a greater accuracy in the greyscale and elastography
quality and a more uniform pressure.

There is also evidence supporting better SR accuracy and CVs (CV = 0.08-0.65 for SR
ranging 1.57-2.47) when the stiffness difference between a target and a control point is
big, whereas CVs are higher in small differences (CV = 1.22-1.7 for SR ranging 0.40-0.60)
[8]. This could be explained by relativity of SRs. Therefore, if the difference between two
points is small, the equipment might not be sensitive enough for this difference, whereas
greater ranges can be detected easily. In this study, our phantom was homogeneous and
the known was SR = 1. Our results showed smaller CVs in the center of the image
compared with the lateral areas (0.05-0.06 and 0.14-0.15, respectively). Thus, experience
does not seem to be a limitation for obtaining reproducible and valid measurements in
central areas of the image.

4.1. Clinical Implications

This study could be useful considering the calculation of SR for developing specific
protocols in musculoskeletal tissues for both research and clinical practice by using semi-
quantitative methodologies in the future. The most assessed musculoskeletal tissue with
elastography is probably the tendon, based on the hypothesis of altered stiffness in the
presence of tendon injury [23]. Although a previous study reported patterns in healthy
tendon elastography, describing them as a uniformly firm structure or heterogeneous
tissue with interwoven longitudinal or spindle-shaped soft tissue strands [24], it is still
controversial how the changes in B-mode US with no abnormalities in elastography or
changes in elastography with no altered B-mode image [25] should be interpreted.

In addition, elastography imaging has been used to assess many muscle pathologies,
including muscular dystrophy [26] or myositis [27], stiffness differences after exercise [28],
or between patients and controls [29]. Furthermore, myofascial trigger points (MTrPs)
have been assessed with different US imaging methods, since the manual identification of
MTrP shows a poor reliability [30] and imaging techniques to visualize MTrP twitch
response and changes in the stiffness are needed. Previous studies observing MTrPs using
B-mode US were consistent in describing MTrPs as hypoechoic regions [31] and using
Doppler US found specific puslatility index response in MTrPs [32].

Furthermore, one study conducted by Jafari et al. [33] assessed MTrP stiffness by
using elastography imaging to quantitatively distinguish MTrP from normal tissue and
obtained significant differences between MTrPs and the normal part of the muscle.
However, a recent study found no stiffness differences between active and latent MTrPs
or control points with MTrPs [12]. The methodology assessed on this study could be
applied to calculate the SR between an MTrP control point or two control points (since it
showed a good validity and reliability), its correlation with pain pressure thresholds and
SR changes after treatment.

Like in tendons, a previous study reported poor reproducibility of elastography in
skeletal muscles [34], probably due to non-standardized contraction/relaxation state of the
muscle or image soft tissue anisotropy.
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4.2. Limitations

Finally, this study has some limitations. This study was performed assessing an
artificial material under optimal conditions. We do not know if similar results would be
observed in real subjects (e.g., image anisotropy due to round morphology of muscle
bellies or vessels, or non-standardized state of the muscle and subject). Although
reliability of SR calculation using strain elastography can be calculated in real subjects,
validity cannot be analyzed with semi-quantitative elastography as all data obtained are
relative and the real stiffness difference is unknown. Therefore, it is important to
emphasize the need for further research comparing these semi-quantitative analyses with
quantitative results expressed in metric units in real subjects.

In addition, just one homogeneous material, one ultrasound machine and one
transducer were used. There is a need of evaluation in more homogeneous materials using
different machines/probes to confirm our findings.

5. Conclusions

Although previous studies have assessed utility aspects of semi-quantitative strain
elastography to calculate SR, most studies tackled references and targets with significant
stiffness differences [8,9,11,13]. However, recent research focusing on MTrPs
demonstrated that the magnitudes of the stiffness differences in real tissues are smaller
than the ones analyzed in phantoms [12]. As previous reports demonstrated that the
accuracy of strain elastography is directly proportional to the stiffness difference between
two points, the main novelty of this study lies in the selection of a homogeneous material
to calculate the reliability between examiners and the instrument validity considering the
region of interest location and the experience of the examiners. We found that semi-
quantitative elastography SR calculation shows an acceptable inter-examiner reliability,
validity and variability of measurement. Reliability, validity and variability were similar
independent of the examiner ultrasound and transducer use experience. However, our
results suggested that central areas are more reliable and accurate than lateral areas of the
image. This paper proposes technical considerations regarding the experience of the
examiners and the most accurate region of interest for future studies assessing SRs of soft
tissues with small stiffness differences.
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