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Abstract

Background: Dyskinesias associated with involuntary movements and painful muscle contractions are a common and
severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine) therapy for Parkinson’s disease.
Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought
to underlie this currently untreatable condition.

Methodology/Principal Findings: Quantitative real-time polymerase chain reaction (PCR) was employed to evaluate the
molecular changes associated with L-DOPA-induced dyskinesias in Parkinson’s disease. With this technique, we determined
that thyrotropin releasing hormone (TRH) was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian
rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the
contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining
suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not
develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum,
particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both
the direct and indirect pathways, as well as neurons in striosomes.

Conclusions/Significance: TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in
experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a
dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a
TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity
in Parkinson’s disease.
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Introduction

The loss of striatal dopamine that results from degeneration of

midbrain dopamine-containing neurons is responsible for much of

the motor dysfunction characteristic of Parkinson’s disease (PD).

Symptomatic treatment of PD patients with levodopa (L-DOPA)

alleviates many of these motor symptoms. However, in conjunc-

tion with the progression of the disease, long-term L-DOPA

treatment leads to the development of adverse responses including

debilitating L-DOPA-induced dyskinesias (LIDs) that can include

choreic, hyperkinetic movements or dystonic movements [1,2,3].

The frequency and severity of LIDs increase with the duration of

the L-DOPA treatment and with the progression of the disease [4],

and there is strong evidence indicating that LIDs result from

abnormal plasticity within the striatum [3,5,6,7,8].

Of the several animal models that reproduce the features of LID,

among the most extensively studied is the classic hemi-parkinsonian

rat model, in which one side of the striatum is depleted of dopamine

by 6-hydroxydopamine (6-OHDA) before the dyskinesia-inducing

treatment with L-DOPA. We used this model here to identify genes
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related to pathologic neuroplasticity associated with PD and LID.

We found that among the largest and most significant changes that

were induced by L-DOPA in the dopamine-depleted striatum of

rats was an enhancement of the mRNA for preprothyrotropin

releasing hormone (TRH) [9]. This result was of particular interest,

given that thyrotropin-releasing hormone (TRH), in addition to its

well-known function in regulating thyroid-stimulating hormone

(TSH) and thyroid function, is increasingly recognized as having

neuromodulatory roles [10].

Clinically, hyperthyroidism has long been associated with hyper-

kinetic movement disorders, and correcting the hormonal imbalance

can resolve the hyperkinesia [11,12,13,14]. Thyrotoxicosis has also

been reported in PD patients with severe tremor [15,16,17,18], and

anti-thyroid treatment has been effective in controlling ‘on-off’

phenomenon and dyskinesia in thyrotoxic patients with PD [16,19].

To determine the neural basis for these effects of TRH and

thyroid hormones, we examined the effects of dopamine depletion

and subsequent L-DOPA treatment on the striatal expression of

preproTRH mRNA by quantitative PCR (qPCR) and proTRH

peptide by immunohistochemistry and by radioimmunoassay (RIA)

[10,20,21]. Our findings demonstrate that L-DOPA treatment

leading to dyskinesia-like abnormal movements is associated with

marked up-regulation of preproTRH mRNA in the dopamine-

depleted striatum and with striking up-regulation of proTRH

immunostaining in striatal efferent projections to the pallidum and

the substantia nigra. These findings point to dysregulation of striatal

TRH expression in these major output pathways of the basal

ganglia as a potential central factor in the induction of LIDs.

Results

To induce behavioral changes similar to the dyskinesias

observed in PD patients [22,23,24,25,26], we employed the well-

established neurotoxic rat model of PD, in which unilateral

infusion of 6-OHDA into the medial forebrain bundle, inducing

loss of dopamine-containing neurons in the nigrostriatal system,

was followed by chronic L-DOPA treatment. We administered L-

DOPA (25 mg/kg) twice daily for 21 days and evaluated the

motor behavior of rats every third day for 1 min, 20 min after the

morning L-DOPA treatment. Groups of control rats were given L-

DOPA treatment without prior dopamine depletion, or were given

the 6-OHDA infusions to deplete dopamine levels but were then

treated with saline instead of L-DOPA. Because the 6-OHDA

infusions (and saline control infusions) were made unilaterally, we

were able also to examine the striatum contralateral to the side of

dopamine-depletion as an intra-animal control.

Of the 10 rats with unilateral 6-OHDA lesions and chronic L-

DOPA treatment, 8 (80%) developed dyskinetic behaviors during

the 21 days of treatment (Friedman test S = 20.45, p,0.0001),

whereas none of the animals treated with saline, or given sham

lesions with or without L-DOPA treatment, developed motor

complications (Figure 1A). The 20% of the rats with unilateral 6-

Figure 1. TRH increases with dyskinetic behavior. (A) Behavioral scores assessed 20 min after L-DOPA administration. Red line: 6-OHDA/L-
DOPA. The animals belonging to this group are the only ones developing dyskinesias. Black line: superimposed, identical values for 6-OHDA/saline;
No lesion/L-DOPA; no lesion/saline. The animals in the three control groups never developed dyskinesias. (6-OHDA/L-DOPA vs. all other groups
p,0.0001). (B) PreproTRH mRNA levels measured by qPCR. The mRNA levels for preproTRH in the right striatum (6-OHDA lesion side) of the animals
chronically treated with L-DOPA were significantly increased (Bonferroni T **p,0.001) with respect to the striatum contralateral to the lesion of 6-
OHDA/L-DOPA rats with LIDs and the non-dyskinetic control groups. (C) PreproTRH mRNA levels are associated with the presence of dyskinesias.
PreproTRH mRNA levels in the striatum ipsilateral to the 6-OHDA lesion showed a positive correlation with the behavioral scores (Pearson’s r = 0.725,
p = 0.0002), but the relationship between the behavioral scores and the mRNA levels did not follow a linear relationship. No correlation was found
between the mRNA levels for preproTRH and the behavioral scores of the control animals (Pearson’s r = 0.313, p = 0.17). Shaded areas flanking the
correlation curve represent the 95% confidence intervals. (D) Radioimmunoassay for TRH, pYE27, and pYE17. The TRH tripeptide is derived from the
processing of the larger precursor proTRH, as are the peptides pYE27, and pYE17 (TRH structure shown in panel to right). Results of the RIA show that
all three peptides derived from the larger preproTRH are greatly increased in the striatum ipsilateral to the lesion in the rats with LIDs, but not in the
striatum contralateral to the lesion of the rats with LIDs, or in either striata of control treatment rats (Bonferroni T p,0.001).
doi:10.1371/journal.pone.0013861.g001
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OHDA infusions and chronic L-DOPA treatment that did not

develop dyskinetic behaviors did not exhibit evidence of a

successful nigral lesion, based on tyrosine hydroxylase (TH)

immunostaining, and were excluded from further analysis.

Striatal tissues were dissected 12 hours after the last L-DOPA

treatment and total RNA was extracted [27] to measure the levels

of preproTRH mRNA with qPCR. The levels of preproTRH mRNA

were significantly increased in the dopamine-depleted striatum of

the rats that developed dyskinesia in response to the L-DOPA

treatment (mixed design analysis of variance [ANOVA]; Treat-

ment 6 Side interaction: F1,31 = 19.93, p,0.0005; Figure 1B),

relative to levels in the contralateral striatum and to striatal levels

in control rats that were dopamine-depleted and treated with

saline or given sham lesions and treated with L-DOPA.

PreproTRH mRNA levels in the dopamine-depleted striatum of

the L-DOPA-treated animals were positively correlated with the

behavioral scores (Pearson’s r = 0.725, p = 0.0002) (Figure 1C).

The preproTRH mRNA levels measured in the striatum contralat-

eral to the lesion did not show a significant correlation with the

behavioral scores (Pearson’s r = 0.313, p = 0.17) (Figure 1C).

Despite the highly significant correlation between the behavioral

scores and the mRNA levels in the dopamine-depleted striatum,

however, the amount of preproTRH up-regulation and the severity

of the behavioral abnormalities were not linearly related

(Figure 1C). Thus, the up-regulation of preproTRH was a

predictor of the presence of dyskinesia-like motor abnormalities,

but not of the severity of these symptoms. These findings suggest

that preproTRH transcription is strongly and specifically up-

regulated in the dopamine-depleted striatum by L-DOPA

treatment, and that this up-regulation is accompanied by the

appearance of some level of abnormal movements in the animals.

The changes in preproTRH mRNA are accompanied by
changes in TRH peptide

To determine whether these changes in striatal preproTRH

mRNA in the L-DOPA-treated animals were accompanied by

changes in the levels of TRH peptide, we performed RIAs and

examined proTRH-like immunostaining of striatal tissues from the

dopamine-depleted and control sides of rats treated with L-DOPA.

The biosynthesis of TRH (pyroGlu-His-ProNH2) begins with

mRNA-directed ribosomal translation of a larger inactive

precursor called proTRH (Figure 1D). ProTRH then undergoes

post-translational sequence-specific cleavages in tissue- and cellular

compartment-specific steps by the processing enzymes prohor-

mone convertase 1 (PC1) and prohormone convertase 2 (PC2),

leading to the generation of biologically active TRH and other

non-TRH peptides with potential biologic activity [10,20,21,28].

We therefore performed RIAs to measure both the amount of

TRH and the amount of two other peptides derived from the

proTRH precursor: pYE27 from the N-terminus and the C-

terminal fragment pYE17.

RIA assays (Figure 1D) demonstrated large increases in pYE27

(mixed design ANOVA, Treatment 6 Side interaction:

F3,15 = 487.8, p,0.0001), pYE17 (F3,15 = 11205, p,0.0001) and

TRH (F3,15 = 1385, p,0.0001) in the striatum ipsilateral to the 6-

OHDA lesion in the animals treated with long-term L-DOPA, but

not on the contralateral side, and not in the dopamine-depleted

striatum of control rats that were treated with saline, nor in sham

animals treated with L-DOPA. These measurements suggested

that the TRH that we detected in the striatum of the L-DOPA-

treated animals in the dopamine-depleted hemisphere was the

result of full processing of proTRH hormone. This finding, in

combination with increased preproTRH mRNA within the striatum,

indicates that the up-regulated TRH is encoded for and

synthesized locally within the striatum of rats with dyskinesia-like

motor abnormalities.

Immunohistochemical localization of striatal proTRH
peptide

To evaluate the regional distribution of the proTRH and TRH

changes observed at the mRNA level and peptide level with qPCR

and RIA, we used the rabbit antibody raised against the c-terminal

peptide pYE17. In control experiments shown in Figure S1, we

demonstrated that pre-absorption of anti-pYE17 antibody with the

peptide pYE17 (amino acids 241–255, QSPQVEPWDKEPLEE)

completely abolished immunostaining, whereas pre-absorption of

anti-pYE17 antibody with the n-terminal peptide pYE27 (amino

acids 25-50, LPEAAQEEGAVTPDLPGLENVQVRPE) did not

affect immunostaining. These findings, indicating the specificity of

the anti-pYE17 antibody, confirm the results of Nillni and

colleagues [20,21,28,29,30,31] and others [32,33,34,35,36,37,38].

With this antibody, we found a striking up-regulation of

immunolabeling for proTRH in the dopamine-depleted striatum

of the L-DOPA-treated animals, relative to that in control rats

treated with saline after the lesion (Figures 2 and 3).

In the rats treated with saline (Figure 2A), there was almost no

proTRH immunostaining visible in the dopamine-depleted

striatum, and proTRH immunostaining was also almost absent

in the striatum contralateral to the dopamine-depletion in L-

DOPA-treated animals. Exceptions were scattered proTRH-

positive pseudounipolar neurons in the most dorsal and medial

parts of the caudoputamen, near the lateral ventricles (Figure 4),

present in all animals regardless of their treatment schedule. They

resemble neurons of the rostral migratory stream [39,40].

In sharp contrast, there was strong proTRH immunostaining in

the dopamine-depleted striatum of the rats treated with L-DOPA.

Figure 2A illustrates this gradient of immunostaining at six

anteroposterior levels in three of the cases, relative to the

immunostaining at similar levels through the brain of a saline-

treated control. The L-DOPA-treated cases shown from left to

right in Figure 2A received, respectively, average dyskinesia

scores of 7, 8 and 8 for the last three behavioral assessments. On

the dopamine-depleted side, the proTRH immmunostaining was

intense laterally and ventrolaterally, but there was relatively little

immunostaining medially or at far-anterior levels. Caudally, small

focal zones of intense stain appeared, with very little immuno-

staining around them (Figure 2B, top). The L-DOPA treatment

also induced intense immunostaining of neuropil in the globus

pallidus (the rodent equivalent of the external pallidum), the

entopenduncular nucleus (the rodent equivalent of the internal

pallidum), and the pars reticularis of the substantia nigra

(Figure 2B, middle and bottom panels). This proTRH immuno-

staining of the output nuclei of the striatum was strong in all L-

DOPA-treated rats on the side of dopamine depletion (Figure 2A,

3 right columns), and was absent in all controls (Figure 2A, left

column).

The proTRH labeling in the intensely immunostained regions

of the caudoputamen was in both cell bodies and neuropil and

appeared to be associated with neurons of medium size, likely

corresponding to medium spiny neurons (Figure 2C). The

staining observed in globus pallidus, entopenduncular nucleus

and the substantia nigra pars reticularis appeared to be

concentrated in neuropil, a pattern consistent with labeling of

the axons of striatal medium spiny neurons (Figure 2B).

The proTRH immunostaining was not equivalently intense in

the dopamine-depleted striatum of all of the animals treated with

L-DOPA, but elements of the patterns shown in Figures 2 and 3
appeared in all of them. To test whether this uneven striatal

TRH and Dyskinesia
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immunostaining was the result of variations in the locations of the

6-OHDA injections or unintended damage during the 6-OHDA

injections or fixation process, we stained nearby striatal sections for

TH, CalDAG-GEFII and m opioid receptor 1 (MOR1). TH was

chosen as a marker of the extent of the dopamine depletion,

whereas CalDAG-GEFII and MOR1 are two immunomarkers

that have been previously shown to be dysregulated by combined

6-OHDA lesion and L-DOPA therapy [9,41].

TH immunostaining of the substantia nigra (Figure 2A second

to last row) was, as expected, strong on the control side but was

scarcely detectable on the side of the 6-OHDA lesion. Similarly,

TH immunostaining of the striatum was strong contralateral to the

lesion but was almost nil on the dopamine-depleted side. CalDAG-

GEFII and MOR1 immunostains also were dysregulated across

the full extent of the striatum on the side of the lesion in the L-

DOPA-treated animals: CalDAG-GEFII was strongly up-regulat-

Figure 2. Up-regulation of TRH is specific for the dopamine-depleted striatum of rats with L-DOPA-induced dyskinesias. (A) Saline:
proTRH immunoreactivity is very low absent in the dopamine-depleted striatum (right) of a control, saline-treated rat. Sections run from rostral (top)
to caudal (bottom). L-DOPA: proTRH immunoreactivity is strong and variable in the dopamine-depleted striata of three exemplary L-DOPA-treated
dyskinetic rats. Tyrosine hydroxylase (TH) immunostaining indicates loss of dopamine-containing cell bodies in the substantia nigra pars compacta
(upper section) and uniform loss of dopamine-containing terminals in the striatum (lower section), ipsilateral to the lesion, of all four rats. (B) ProTRH
immunostaining in fibers of the external globus pallidus (top panel), entopeduncular nucleus (middle panel) and substantia nigra pars reticularis
(bottom panel) of a dopamine-depleted rat with LID. (C) ProTRH immunoreactivity in a putative medium spiny neuron in a striatal section from a rat
with LID.
doi:10.1371/journal.pone.0013861.g002
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ed, and MOR1 immunostaining was strongly down-regulated

(Figure 3A). Thus, the spatial extent of the proTRH up-

regulation, favoring the lateral striatum, did not appear to be

the result of a partial lesion effect as judged by three other

immunomarkers. This observation favors the view that TRH may

be up-regulated in only a subset of medium spiny striatal neurons.

It is possible that variation in the degree of proTRH immuno-

staining from case to case reflects temporal variation in the TRH

response to L-DOPA. There was clearly strong up-regulation of

proTRH immunostaining in both striosomes and matrix in the

most intensely stained zones of the caudoputamen, but as the

proTRH immunostaining diminished medially, the staining was

uneven, and at posterior levels, the small zones of intense

immunostaining had the appearance of striosomes. With adjoining

sections immunostained for a striosomal marker [42], these focal

zones were identified as striosomes (Figure 3B). Thus the pattern

of TRH regulation in the striatum was one in which proTRH was

up-regulated in a large part of the lateral striatum in both

striosomes and matrix, but in which there was up-regulation in

striosomes of the more weakly affected zones, especially at caudal

levels.

Discussion

Our findings demonstrate that in the classic 6-OHDA model of

PD, there is a strong up-regulation of expression of TRH in the

dopamine-depleted striatum and its efferent projections to the

pallidum and substantia nigra. Further, we show that the

enhanced expression of striatal proTRH was associated with the

behavioral expression of motor complications in response to long-

term L-DOPA therapy. Both preproTRH mRNA and TRH peptide

levels were increased, and these increases were selective for the

combination of 6-OHDA-induced dopamine depletion and L-

DOPA treatment. As our RIA findings suggested that the TRH

peptide produced was fully processed, the TRH detected was likely

biologically active. Remarkably, in the striatum of control animals,

whether sham-depleted or dopamine-depleted and treated with

saline, immunostaining for proTRH was almost absent. These

findings suggest that the up-regulation of TRH was induced by

combined dopamine depletion and L-DOPA treatment, not by

dopamine depletion alone or by L-DOPA treatment alone.

Activation of signaling cascades related to TRH could thus be

critically important for understanding the mechanisms giving rise

to the occurrence of dyskinesias in parkinsonian conditions.

The model that we employed induced an almost complete

lesion of the dopamine-containing neurons in the pars compacta of

the substantia nigra, and we administered high doses of L-DOPA.

This model thus parallels a relatively advanced stage of PD in

which dyskinesias are prevalent, presumably because patients have

more pronounced nigral cell loss and are taking increasingly high

doses of anti-parkinsonian medication. But the 6-OHDA model

does not incorporate a prolonged decline of the population of

dopamine-containing neurons in the substantia nigra. Whether

TRH up-regulation is specific to severe, late-stage models of the

disease process or might be observed with lesser degrees of

dopamine depletion is still unknown.

Figure 3. TRH shows a complex pattern of up-regulation that includes preferential expression in caudal striosomes. (A) Non-uniform
proTRH immunostaining in the dopamine-depleted striatum of three individual rats as compared to relatively uniform up-regulation of CalDAG-GEFII
and down-regulation of MOR1 in the same rats. (B) The subcallosal streak (arrow) and putative striosome (asterisk) immunostained for proTRH (top
panel) and the striosome marker CalDAG-GEFII (bottom panel) in neighboring striatal sections from a rat with LID.
doi:10.1371/journal.pone.0013861.g003

TRH and Dyskinesia

PLoS ONE | www.plosone.org 5 November 2010 | Volume 5 | Issue 11 | e13861



We found a marked increase in the mRNA for preproTRH,

which gives rise to TRH and several other fragments. By

immunohistochemistry, we observed a pronounced and patterned

increase in proTRH immunostaining in the striatum, with the

strongest proTRH expression concentrated in the lateral and

ventrolateral striatum including the sensorimotor striatum. This

proTRH immunostaining was apparent in the cell bodies of

putative striatal medium spiny neurons, and in striatal efferent

axons terminating in the external and internal pallidal segments

and the pars reticularis of the substantia nigra. Our findings thus

suggest that the striatal up-regulation of TRH affects both the

direct and indirect pathways of the basal ganglia and parts of the

striosomal pathway as well.

We could identify several features of this pronounced increase in

striatal TRH. First, the proTRH up-regulation within the striatum

mainly occurred in lateral and ventrolateral regions, despite the

fact that the dopamine-depletion was relatively uniform. This

selectivity suggests that the TRH dysregulation strongly affected

the sensorimotor striatum and nearby regions. In addition, there

appeared to be differential up-regulation of TRH expression in

caudal parts of the striosomal system, judging from the

immunohistochemistry. This anatomical distribution accords with

the induction of the motor problems in the animals, and is

consonant with reports that up-regulation of prodynorphin and

FosB is non-uniform and particularly concentrated in parts of the

striosomal system and the ventrolateral aspect of the striatum in

other rat models of LIDs [8,43,44,45]. The particular emphasis on

the lateral and caudal striatum is interesting, given the poster-

iolateral to anterior gradient of dopamine loss in the human

striatum in PD [46].

Second, although we could not conclusively identify the subtype

of the medium-sized neurons expressing increased proTRH

immunoreactivity, the increased proTRH immunostaining in

both pallidal segments and the substantia nigra suggests that both

direct and indirect pathway neurons of the striatum were affected

by the L-DOPA treatment in such a way that proTRH-

immunostained material reached the terminals of these pathways.

This finding is interesting in light of findings that L-DOPA-

induced hyper-activation of the extracellular signal-regulated

kinases, ERK1/2, which are required for the development of

LIDs in mouse models, is restricted to medium spiny neurons of

the direct pathway [47,48].

Immunohistochemical stains identified striosomal proTRH up-

regulation in striosomes of the caudal striatum. This result is

particularly striking, as it suggests that the TRH up-regulation

induced by L-DOPA in the dopamine-depleted striatum differen-

tially affects subcircuits within the direct, indirect and striosomal

pathways. These subcircuits could be particularly relevant to the

genesis of dyskinesias [3,7,8,49,50] as well as dysfunction in a

range of other movement disorders [51,52,53]. Notably, the

increased striatal TRH immunostaining that we observed was

combined with increased immunostaining for CalDAG-GEFII but

with decreased immunostaining for MOR1, both reliable markers

of striosomes. Interactions between the TRH changes we observed

and other known regulatory changes in striatal neurotransmission

are likely to be important [5,54,55,56].

Our findings add to a body of evidence that TRH, although best

known for its hypophysiotropic function in regulating TSH release

and thyroid function, also directly affects non-hypothalamic neural

circuits. Hyperthyroidism has long been associated with hyperki-

netic movement disorders, and treating this hormonal abnormality

can resolve the hyperkinesia [11,12,13,14]. Thyrotoxicosis has

been reported in some PD patients with severe tremor

[15,16,17,18], and anti-thyroid treatment has been effective in

Figure 4. TRH expression in pseudounipolar neurons of rats with LID-inducing treatments and control treatments. (A) ProTRH+

periventricular neurons in the dorsal striatum contralateral to the 6-OHDA lesion in an animal that developed LIDs (magnification 106). Full arrows
show clusters of pseudounipolar neurons. (B) ProTRH+ periventricular neurons and putative medium spiny neurons in the dorsal striatum ipsilateral
to the 6-OHDA lesion in an animal that developed LIDs. Full arrows show clusters of pseudounipolar neurons; tail-less arrows show examples of
putative medium spiny neurons. (C) ProTRH+ periventricular neurons in the dorsal striatum contralateral to the 6-OHDA lesion in an animal treated
with saline (inset: higher magnification of the pseudounipolar neurons immunopositive for proTRH). Full arrows show clusters of pseudounipolar
neurons. (D) ProTRH+ periventricular neurons in the dorsal striatum ipsilateral to the 6-OHDA lesion in an animal treated with saline. Full arrows
show clusters of pseudounipolar neurons; Abbreviations: striatum: CP; lateral ventricle: V.
doi:10.1371/journal.pone.0013861.g004

TRH and Dyskinesia

PLoS ONE | www.plosone.org 6 November 2010 | Volume 5 | Issue 11 | e13861



controlling ‘on-off’ phenomenon and dyskinesia in thyrotoxic

patients with PD [16,19]. Our findings raise the possibility that the

dyskinesias suffered by patients with PD following prolonged L-

DOPA therapy are also correlated with spatially selective

dysregulation of TRH within the striatum. Striatal changes in

TRH peptide content are associated with changes in mRNA for

preproTRH, and we found full processing of the prepro-peptide

within this same structure. Thus, as the encoding and synthesis of

the peptide happens fully within the striatum, it seems likely that

the effects of TRH in response to LIDs did not rely on the

regulation of peripheral thyroid hormones, which would require

release of TRH into the portal system.

Particularly relevant to the findings we report here are

experiments suggesting that the behavioral patterns stimulated

by increased intrastriatal TRH in intact non-primate mammals

are akin to human dyskinesia [57,58,59,60,61,62,63]. Studies have

suggested that the behavioral effects of TRH are exerted via the

stimulation of striatal dopamine release [64], and that they can be

antagonized by both D1-class and D2-class dopamine receptor

antagonists [57,58,59]. In turn, striatal dopamine levels have also

been shown to modulate the release of TRH within the rat

striatum [61,62], with higher levels of dopamine correlating with

higher levels of intrastriatal TRH.

Our findings suggest that up-regulation of striatal expression of

TRH in the striatum and its output pathways is strongly correlated

with the expression of L-DOPA induced dyskinesia and that this

up-regulation could be an essential feature of the dyskinetic state in

parkinsonism. These observations raise the possibility that

treatments targeting TRH expression, the receptor for this

biologically active peptide, or related signaling molecules, could

be useful in treating or preventing L-DOPA-induced dyskinesias in

human PD.

Materials and Methods

Subjects and Surgery
Male Sprague-Dawley rats (250–350 g) were anesthetized with

a combination of ketamine hydrochloride (75 mg/kg) and xylazine

(10 mg/kg). Under stereotaxic guidance, 6 ml of 6-OHDA

hydrobromide (10 mM 6-OHDA in 0.01% ascorbic acid, 1 ml/

min) or saline (for control, sham-lesion animals) was injected into

the right medial forebrain bundle (AP = 24.0 mm,

ML = 21.3 mm, DV = 8.4 mm). Three weeks after the surgery,

an observer blind to the treatment condition counted the number

of turns made to the side contralateral to the side of the 6-OHDA

lesion over a 1 min sampling period, 10 min after injection of

apomorphine subcutaneously (0.5 mg/k). This procedure was

followed to estimate the extent of dopamine depletion. Rats with 6

or more contralateral turns/min were classified as having a

successful lesion.

Drug Treatments and Behavioral Observation
The rats were treated intraperitoneally (i.p.) with either L-

DOPA (25 mg/kg)/benserazide hydrochloride (6.25 mg/kg) in

1 ml/kg saline solution, or with saline (1 ml/kg), for a period of 21

days twice daily (10 AM and 5 PM). Table 1 shows the numbers

of rats and the test group assignment of all of the animals.

The rats were observed for 1 min, 20 min after the adminis-

tration of L-DOPA on every third day during the entire treatment

period. Turning behavior contralateral to the lesion side was

recorded as a measure of the severity of the lesions. Dyskinetic

behaviors were recorded and subsequently coded on the basis of

the type and severity of the behaviors exhibited (Table 2) by two

observers blind to the treatment. The animals were euthanized

12 hrs after the last injection (see Table 1). All of the animal

treatments were approved by the Massachusetts Institute of

Technology (MIT) Committee on Animal Care.

RNA Extraction and Real-Time qPCR
Rats were decapitated, brains were rapidly removed from the

calvarium, and striata were rapidly dissected out and frozen. Total

RNA was isolated from the dissected striatal samples and cDNA

was synthesized as previously described [27]. Short synthetic PCR

primers were designed to amplify a small 225 bp amplicon for

preproTRH (forward primer: TGT CAC CAA GAG GCA ACA

TC; reverse primer: CTT TGC TTC ACC AGG GTC TC;

annealing temperature 60uC) using Primer3 software (http://

frodo.wi.mit.edu/primer3/). qPCR was carried out using an

iCyclerH (BioRad, Hercules, CA), and SYBRH Green PCR Master

Table 1. Experimental groups.

Test Lesion and Drug Treatment N

qPCR Lesion + Saline 11

Lesion + L-DOPA 10

Sham lesion + Saline 2

Sham lesion + L-DOPA 3

RIA; IHC Lesion + Saline* 8

Lesion + L-DOPA ** 9

Sham lesion + Saline*** 2

Sham lesion + L-DOPA**** 3

Description of the assignment of the animals used in this study to the different
experimental groups, and the biological tests they were used for (
*4 Fixed and 5 Frozen;
**4 Fixed and 5 Frozen;
***1 Fixed and 1 Frozen;
****1 Fixed and 2 Frozen).
Abbreviations: IHC, immunohistochemistry.
doi:10.1371/journal.pone.0013861.t001

Table 2. Behavioral rating scale for L-DOPA-induced
dyskinesias.

Abnormal Involuntary Movements Severity Rating

Contralateral Involuntary Repetitive Forelimb Movements Absent: 0

Mild: 1

Moderate: 2

Severe: 3

Twisted Posture of Head and/or Body to Contralateral
Side

Absent: 0

Mild: 1

Moderate: 2

Severe: 3

Contralateral Turning Behavior #6/minute: 1

$6/minute: 2

Hindlimb Dystonia Absent: 0

Present: 1

Oral Stereotypy Absent: 0

Present: 1

doi:10.1371/journal.pone.0013861.t002
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Mix (Applied Biosystems, Foster City, CA). Curves with known

concentrations of cDNA were generated to calculate the efficiency

of each of the primers, and to quantitate products with the DDCt

method [65,66]. Data were normalized to GAPDH mRNA levels.

Peptide Radioimmunoassay (RIA)
All RIAs were performed as previously described [20]. The RIA

incubation contained 100 pl of antiserum, 100 pl of sample, and

200 pl of RIA buffer (10.1 M phosphate buffer with 0.5% bovine

serum albumin; pH 7.2). One hundred ml of 125I-peptide

(10,000 cpm) was added following a 24 hr pre-incubation at

4uC. After an additional 48 hr incubation at 4uC, 1.0 ml of 0.1%

activated charcoal was added to each reaction to separate bound

and free 125I-peptide. The supernatants were counted for

radioactivity, following centrifugation at 2,0006 g for 30 min.

Immunohistochemistry
Rabbit anti-CalDAG-GEFII (1:1,500, Santa Cruz Biotechnol-

ogy); mouse anti-tyrosine hydroxylase (1:4,000, Immunostar);

rabbit anti-pYE17 (1:4000; precursor of TRH was generated in

the laboratory of Eduardo Nillni [20]), and rabbit anti-m opioid

receptor 1 (1:20,000, Immunostar) were used for immunohisto-

chemistry for light microscopy as described in [67].

Statistical Methods
Behavioral testing. The dyskinesia scores were analyzed

with Friedman’s two-way ANOVA by ranks for correlated

samples, followed by Dunn’s test for multiple comparisons. To

estimate the degree of correlation between mRNA levels and

behavioral measures, we calculated Spearman’s correlation

coefficients for ranked data.

qPCR and RIA measurements. A mixed design ANOVA

with a between subjects variable (Treatment: saline, L-DOPA),

and a within subject variable (Side: lesion, no lesion) was used to

evaluate statistical differences between left and right striatal

mRNA levels and RIA peptide levels for samples from animals

with 6-OHDA lesions treated with chronic L-DOPA or saline,

followed by a Bonferroni T test for multiple comparisons.

Supporting Information

Figure S1 Pre-absorption of anti pYE17 antibody demonstrates

the specificity of proTRH immunostaining. For this experiment

we used a rat with a 6-OHDA lesion and long-term levodopa

treatment. This animal developed LIDs and upregulation of TRH.

We immunostained striatal sections from this rat with anti-pYE17

alone, anti-pYE17 pre-absorbed with either pYE17 or pYE27

peptide or with the primary antibody omitted. (A) Anti-pYE17

alone shows strong immunostaining for proTRH. (B) Immuno-

staining was completely blocked by preabsorbtion of anti-pYE17

with pYE17 peptide. (C) Immunostaining for proTRH was not

disrupted by preabsorbtion of anti-pYE17 with pYE27 peptide.

(D) Omission of the primary antibody anti-pYE17 abolished

immunostaining.

Found at: doi:10.1371/journal.pone.0013861.s001 (0.35 MB EPS)
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