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Abstract. The success of electronic authentication systems, be it e-
ID card systems or Internet authentication systems such as CardSpace,
highly depends on the provided level of user-privacy. Thereby, an im-
portant requirement is an efficient means for revocation of the authenti-
cation credentials. In this paper we consider the problem of revocation
for certificate-based privacy-protecting authentication systems. To date,
the most efficient solutions for revocation for such systems are based on
cryptographic accumulators. Here, an accumulate of all currently valid
certificates is published regularly and each user holds a witness enabling
her to prove the validity of her (anonymous) credential while retaining
anonymity. Unfortunately, the users’ witnesses must be updated at least
each time a credential is revoked. For the know solutions, these updates
are computationally very expensive for users and/or certificate issuers
which is very problematic as revocation is a frequent event as practice
shows.

In this paper, we propose a new dynamic accumulator scheme based
on bilinear maps and show how to apply it to the problem of revocation
of anonymous credentials. In the resulting scheme, proving a credential’s
validity and updating witnesses both come at (virtually) no cost for cre-
dential owners and verifiers. In particular, updating a witness requires
the issuer to do only one multiplication per addition or revocation of a
credential and can also be delegated to untrusted entities from which
a user could just retrieve the updated witness. We believe that thereby
we provide the first authentication system offering privacy protection
suitable for implementation with electronic tokens such as elD cards or
drivers’ licenses.

Keywords: dynamic accumulators, anonymous credentials, revocation.

1 Introduction

The desire for strong electronic authentication is growing not only for the Inter-
net but also in the physical world where authentication tokens such as electronic
identity cards, driving licenses, and e-tickets are being widely deployed and are
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set to become a pervasive means of authentication. It has been realized that
thereby the protection of the citizens’ privacy is of paramount importance and
hence that the principle of data minimization needs to be applied: any individual
should only disclose the minimal amount of personal information necessary for
the transaction at hand. While privacy is of course not a major concern for the
primary use of these tokens, e.g., for e-Government, it becomes vital for their
so-called secondary use. For instance, when accessing a teenage chat room with
an e-ID card, users should only have to reveal that they are indeed between, say,
10 and 16 years old but should not reveal any other information stored on the
card such as birth date, name or address.

In the literature, there exist a fair number of privacy-preserving technologies
that allow one to meet these requirements. These technologies include anony-
mous credential systems [II2I3], pseudonym systems [4I5I6/7], anonymous e-cash
[BI9IT0], or direct anonymous attestation [II]. Almost all of these schemes ex-
hibit a common architecture with certificate issuers, users (certificate recipients)
and certificate verifiers: Users obtain a signature from an issuing authority on a
number of attributes and, at later time, can convince verifiers that they indeed
possess a signature on those attributes [12]. Individual transactions are anony-
mous and unlikable by default and users can select which portions of a certificate
to reveal, which portions to keep hidden, and what relations between certified
items to expose.

A crucial requirement for all authorization and authentication systems is that
certificates issued can be later revoked, in case of unexpected events or mali-
cious use of the certificate. For traditional certificates, this is typically achieved
either by publishing a certificate revocation list or by enforcing a short certificate
lifetime via expiration date. For anonymous certificates, the former approach vi-
olates privacy while the latter is typically rather inefficient as it would require
the users to frequently engage in the usually quite involved issuing protocol.

In principle, the approach of certificate revocation list can be made to work also
for anonymous credentials by having the user to prove in zero-knowledge that her
certificate is not contained on the (black) list. Such a proof, however, would not be
efficient as the computational and communication cost of the user and the verifier
become preventive as they grow at least logarithmic with number of entries in the
list. The literature provides two kinds solutions that overcome this.

The first kind is called verifier local revocation [I3JT4ITTIT5). In the best so-
lution here, the cost for the user is independent of the number of entries in the
revocation list, but the computational cost of the verifier is linear in this num-
ber (at least a modular exponentiation or, worse, a pairing operation per entry).
Thus, these solutions are not at all suited for large scale deployments.

The second kind [I6/17] employs cryptographic accumulators [I8]. Such ac-
cumulators allow one to hash a large set of inputs in a single short value, the
accumulator, and then provide evidence by an accumulator witness that a given
value is indeed contained in the accumulator. Thus, the serial numbers of all
currently valid credentials are accumulated and the resulting value is published.
Users can then show to verifiers that their credential is still valid, by using their
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witness to prove (in zero-knowledge) that their credential’s serial number is con-
tained in the published accumulator. Such proofs can be realized with practical
efficiency [I6/I7] and incur only cost to the user and the verifier that are inde-
pendent of the number of revoked or currently valid credentials. The drawback
of these solutions, however, is that the users need to update their accumulator
witnesses and an update requires at least one modular exponentiation for each
newly revoked credential. Assuming a driving license application and based on
the, e.g., 0.07% rate of driver’s license revocation in West Virginia USA [19],
the number of credentials revoked will quickly become a couple of thousands per
day. Thus, these solutions incur a computational (and communication) cost far
greater that what an electronic token such as a smart card can possibly handle.

Our contribution. In this paper we are therefore considering revocation solutions
that incur (virtually) no cost to the verifier and the users, and only limited costs
to the issuer (or the revocation authority). More precisely, for each revocation
epoch (e.g., every day), verifiers and users need to retrieve the issuer’s current
public key (i.e., the new accumulator value) while users further need to retrieve
their witnesses (a single group element). Upon revocation of a credential, the
revocation authority only needs to perform one multiplication per remaining
user to update (and provide) the users’ witnesses, a cost which can easily be
handled by today’s standards. We note that this update operation requires no
secret keys and does not need to be performed by the issuer, i.e., it could be
performed by other untrusted entities.

As building block for this solution, we introduce a novel dynamic accumulator
based on bilinear maps and show how to employ it for revocation at the example
of the Bangerter, Camenisch and Lysyanskaya private certificate framework [12],
which is essentially a generalization of e-cash, anonymous credentials, and group
signatures. Thus we provide for the first time a practical solution for anonymous
authentication with e-ID cards.

Related Work. Camenisch and Lysyanskaya [I7] introduce a dynamic accumu-
lator and show its applicability to revocation in Anonymous Credential Systems
as well as Identity Escrow and Group Signatures. Update of the proposed accu-
mulator, as well as user witnesses, require a number of exponentiations that is
linear in the number of users added to or revoked from the system. In [20], the
authors extend the above accumulator, introducing witnesses and proofs that a
value was not accumulated.

Nguyen [21] constructs a dynamic accumulator from bilinear pairings. Its ap-
plication to an anonymous credential system require users to store large system
parameters, in order to prove validity of their credential. Moreover, updating a
witness takes one exponentiation per event and therefore is not efficient enough
for what we are after (in the paper the authors write multiplication and use addi-
tion as base operation for the algebraic group as is done sometimes in connection
with bi-linear maps and elliptic curve groups).

In [22], the authors propose a dynamic accumulator for batch update. Users
who missed many witness updates, can request update information to the issuer
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and update their witness with one multiplication. In our scheme, we can provide
the same feature, relaxing the requirement that the issuer takes part to the
witness update. We note, however, that the authors do not show how to achieve
an efficient proof of knowledge of an element contained in the accumulator as is
needed for the use of the accumulator for revocation of credentials.

Outline. The rest of the paper is organized as follow. In Section 2 we dis-
cuss assumptions and recall existing building blocks. In Section [3] we introduce
our novel dynamic accumulator. In Section H] we show how to extend the
Bangerter et al. private certificate framework with an efficient revocation
mechanism. Conclusion and further discussion are given in Section [l

2 Preliminaries

In this section we list assumptions and cryptographic tools used as building
blocks of the introduced accumulator as well as our anonymous credential revo-
cation system.

A function v is negligible if, for every integer c, there exists an integer K such
that for all & > K, |v(k)| < 1/k°. A problem is said to be hard (or intractable)
if there exists no probabilistic polynomial time (p.p.t.) algorithm on the size of
the input to solve it.

Bilinear Pairings. Let G and G be groups of prime order g. A mape: GxG —
G must satisfy the following properties:

(a) Bilinearity: a map e : G x G — Gr is bilinear if e(a®, b¥)t = e(a, b)*¥;

(b) Non-degeneracy: for all generators g, h € G, e(g, h) generates Gr;

(c) Efficiency: There exists an efficient algorithm BMGen(1¥) that outputs (¢, G,
Gr, e, g) to generate the bilinear map and an efficient algorithm to compute
e(a,b) for any a,b € G.

The security of our scheme is based on the following number-theoretic assump-
tions. Our accumulator construction is based on the Diffie-Hellman Exponent as-
sumption. The unforgeability of credentials is based on the Strong Diffie-Hellman
assumption. For credential revocation we need to prove possession of an accu-
mulator witness for a credential. This proof is based on our new Hidden Strong
Diffie-Hellman Exponent (SDHE) assumption.

Definition 1 (n-DHE). Diffie-Hellman Ezponent (DHE) assumption: The
n-DHE problem in a group G of prime order q is defined as follows: Let g; =

g'Yla Y <R Zq' On anUt {gmgla g2, -59n,9n+2, - - - aQQn} S G2n’ OUtpUt In+1-
The n-DHE assumption states that this problem is hard to solve.

Boneh, Boyen, and Goh [23] introduced the Bilinear Diffie-Hellman Exponent
(BDHE) assumption that is defined over a bilinear map. Here the adversary has

to compute e(g, h)'Yn+1 € Gr.
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Lemma 1. The n-DHE assumption for a group G with a bilinear pairing e :
G X G — G is implied by the n-BDHE assumption for the same groups.

Boneh and Boyen introduced the Strong Diffie-Hellman assumption in [24].

Definition 2 (n-SDH [24]). On input g,gz,g””2, g — G, it is computa-
tionally infeasible to output (g*/(*+) ¢).

Boyen and Waters [25] introduced the Hidden Strong Diffie-Hellman assumption
under which BB signatures [24] are secure for any message space. We require a
variant of the Hidden Strong Diffie-Hellman assumption that we call the Hidden
Strong Diffie-Hellman Exponent (n-HSDHE) assumption. The two assumptions
are hitherto incomparable.

Definition 3 (n-HSDHE). Given g,¢%,u € G, {gl/(z+7i),g'yi,u”i}i:l___n, and
{g'yl}i:n_;.z___gn, it 1s infeasible to compute a new tuple (gl/(“‘c),gc, uc).

2.1 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for
proving statements about discrete logarithms, such as (1) proof of knowledge
of a discrete logarithm modulo a prime [26], (2) proof of knowledge of equality
of some elements in different representation [27], (3) proof that a commitment
opens to the product of two other committed values [28/29I30], and also (4) proof
of the disjunction or conjunction of any two of the previous [31].

When referring to the above proofs, we will follow the notation introduced by
Camenisch and Stadler [32] for various proofs of knowledge of discrete logarithms
and proofs of the validity of statements about discrete logarithms. For instance,

PK{(a,B,8) 1y = g°h° Aj = G*h°}

denotes a “zero-knowledge Proof of Knowledge of integers v, 8, and & such that
y = g*h® and § = gah5 holds,” where y, g, h,y, g, and h are elements of some
groups G = (g) = (h) and G = (§) = (h) that have the same order. (Note that
the some elements in the representation of y and § are equal.) The convention is
that values (a, 3, d) denote quantities of which knowledge is being proven (and
are kept secret), while all other values are known to the verifier. For prime-order
groups which include all groups we consider in this paper, it is well known that
there exists a knowledge extractor which can extract these quantities from a
successful prover.

2.2 Signature Scheme with Efficient Protocols

For our credential system we use a signature scheme that is loosely based on weak
Boneh and Boyen signatures [24JT6]. It is described in [33] and has been proven
secure under the n-SDH assumption [34/35]. It assumes a non-degenerate bilinear
map e : G Xx G — Gp of prime order ¢ with generators h, hg, h1,..., he, hotq.
The signer’s secret key is z € Z, while the public key is y = h”.
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A signature on a message m € Z; is computed by picking c,s « Z; and
computing o = (hoh}"hg)f}re. The signature is (o, ¢, s). It is verified by check-
ing whether e(o, yh) = e(hohi*h3, h). Multiple messages my,...,m¢ € Z; can
be signed as o = (hoh{"" ---hy""h} +1),iC and verification is done by checking
whether e(o, yh®) = e(hohi* - - hy**hj 1, h).

Proving Knowledge of a Signature. Now assume that we are given a signature
(0,¢,s) on messages mq ..., my € Zy and want to prove that we indeed possess
such a signature. To this end, we need to augment the public key with a value
h € G such that log;, h are not known.

Knowledge of a signature is proven as follows:

1. Choose random values r < Z, and open < Z, and compute a commitment
B = h"h°P™ and a blinded signature A = oh".
2. Compute the following proof

PK{(c, 5,7, open, mult, tmp, my, ..., my) :
B = hrﬁopen Al= Bchfmultilftmp A

€(ho, h)

14
oA y) = AR elh )T -e(h )7 [ [ elhe i)™ ehess, )77}

i=1

Why this proof works is explained in [36].

3 A Pairing Based Dynamic Accumulator with Efficient
Updates

We define and build a dynamic accumulator with efficient updates and assess
its security. With efficient updates we mean that witnesses can be updated by
any party without knowledge of any secret key and require only multiplications
(no exponentiations) linear in the number of changes to the accumulator. Our
construction is based on the broadcast encryption scheme by Boneh, Gentry and
Waters [37].

3.1 Definition of Dynamic Accumulators

A secure accumulator consists of the five algorithms AccGen, AccAdd, AccUpdate,
AccWitUpdate, and AccVerify.

These algorithms are used by the accumulator authority (short authority),
an untrusted update entity, a user and a verifier. The authority creates an ac-
cumulator key pair (ska, pka), the accumulator accg and a public state stateg
using the AccGen algorithm; it can add a new value 4 to the accumulator accy
using the AccAdd algorithm to obtain a new accumulator accy ;) and state
stateyy gy, together with a witness wit;. The accumulator for a given set of
values V', can be computed using the AccUpdate algorithm.
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Throughout these operations, accy and wit; are of constant size (independent
of the number of accumulated values). The authority does some bookkeeping
about the values contained in the accumulator and the status of the accumu-
lator when a witness wit; was created. These sets are denoted as V and V,,
respectively. The bookkeeping information is made public and is only needed for
updating witnesses, it is not needed for verifying that a value is contained in an
accumulator.

Each time an accumulator changes, the old witnesses become invalid. It is
however possible to update all witnesses for values ¢ € V' contained in the accu-
mulator from the bookkeeping information V,,. This updating is the most perfor-
mance intensive operation in existing accumulator systems. We show how it can
be efficiently offloaded to an untrusted update entity that runs AccWitUpdate
and is only given the accumulator state stateyy and the bookkeeping information
V and V,,. The accumulator state statey also contains book keeping informa-
tion U, the set of elements ever added to the accumulator (but not necessarily
contained in the current accumulator). This is a superset of V' and Vv, [

After users obtained an updated witness wit; for a value i for the current
accumulator, they can prove to any verifier that ¢ is in the accumulator, using
the AccVerify algorithm.

AccGen(1%,n) creates an accumulator key pair (sk4, pka), an empty accumulator
accy (for accumulating up to n values) and an initial state stateg.

AccAdd(ska, i, accy, statery) allows the authority to add 7 to the accumulator.
It outputs a new accumulator accyy(;y and state stateyy(;y, together with
a witness wit; for 1.

AccUpdate(pka, V, stateyy) outputs an accumulator accy for values V C U.

AccWitUpdate(pka, wit;, Vi, accy, V, statey) outputs a witness wit} for accy
if wit; was a witness for accy, and i € V.

AccVerify(pka, i, wit;, accy) verifies that v € V using an up-to-date witness wit;
and the accumulator accy . In that case the algorithm accepts, otherwise it
rejects.

Note that the purpose of an accumulator is to have accumulator and witnesses
of size independent of the number of accumulated elements.

Correctness. Correctly accumulated values have verifying witnesses.
Security. For all probabilistic polynomial time adversaries A,

Pr((ska, pka, acco, stateo) «— AccGen(1%);
(i, wit;) — A(pka, acco, statep)Oneerds():Oncctpate()
AccVerify(pka, i, wit;, acco) = accept A i ¢ Vo] = neg(k) ,
! Allowing accumulators to change their state over time can allow for better perfor-

mance tradeoffs. While our accumulator construction does not use this possibility in
order to keep things simple, we outline such an optimization in [36].
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where the oracles Oaccadd(.) and Opaccupdate () keep track of shared variables acco,
stateo and a set Vo that is initialized to (). The oracle Oaccagd(?) computes and
outputs (acco, statep, wit;) «— AccAdd(ska, i, acco, statep) and adds i to Vo
while OaccUpdate( V') computes and outputs acco < AccUpdate(pka, V, stateo)
and sets Vo to V.

3.2 Construction

We now construct the algorithms AccGen, AccAdd, AccUpdate, AccWitUpdate,
and AccVerify.

AccGen(1%,n). Run BMGen(1*) to obtain the setup paramspy = (¢, G, Gr, e, 9)
of a bilinear map e : G x G — Gr.

Pick a random value v € Z,. Generate a key pair sk and pk for a secure
signature scheme, for instance the BB signature scheme that is secure under
the SDH assumption. Let pka = (paramspu, pk,z = e(g,g)'ynﬂ), ska =
(paramsppr, 7y, sk), accyg = 1 and stateg = (0,91 = g“*l7 =9 Gt =
gVnJr 7...,gngw%) o

AccAdd(ska, i, accy, statey). Compute w = Hfé; gnt+1—j+i and a signature o;
on g;||i under signing key sk. The algorithm outputs wit, = (w,0;,9;), an
updated accumulator value accyyiyy = accy - gny1-i, and stateyygy =
(UU {i}vglv' c sy 9ns Gnt-2y - - - 792n)«

AccUpdate(pka, V, stateyy). Check whether V' C U and outputs L otherwise.
The algorithm outputs accy = Hvevgnﬂ,v for values i € V.

AccWitUpdate(pka, wit;, V., accy, V, statey). Parse wit; as (w,04,¢9;). If i € V
and VU V,, C U, compute

H In+1—j+i
/ jE V\Vw

w =w .
II In+1—j+i
FEVL\V

Output the updated witness wit; = (w’, 04, g;). Otherwise output L.
AccVerify(pka, i, wit;, accy). Parse wit, = (w,0;,¢9;). Output accept, if o; is
e(gi,accv)

e(gw) T *

a valid signature on g;||¢ under verification key pk and
Otherwise output reject.

In the construction above, we accumulate the group elements g1, ..., g, instead
of, e.g., the integers 1,...,n. Depending on the application, one would want to
accumulate the latter, or more generally an arbitrary set of size n. In this case,
the issuer of the accumulator would need to publish a mapping from this set to
the g; values that get actually accumulated. In order to avoid large public param-
eters during verification the issuer of the accumulator uses a signature scheme

2 We define statey = (U, g1, ,9n,9gn+2, - - -, g2n) where U is book keeping informa-
tion that keeps track of all elements that were ever added to the accumulator (but
might have been subsequently removed). The rest of the state is static. See [36] for
a modification that reduces the size of statey.
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to sign the g; together with the value to which they map. Thus, the verifier can
check whether a given g; is a (potentially) valid input to the accumulator (cf.
discussion in Section B3)).

We also note that the algorithm to update the witness does not require any
secret information. Thus, the witnesses could be kept up-to-date for the users
either by the users themselves, the issuer, or by some third party. In the latter
two cases, the users can just retrieve the current valid witness whenever needed.
In applications, one would typically define epochs such that the accumulator
value and witnesses are only updated at the beginning of each epoch and remain
valid throughout the epoch. Finally note that maintaining the witnesses for all
users is well within reach of current technologies — indeed, all witnesses can be
kept in main memory and the update performed rather quickly.

Correctness. Let accy be an accumulator for ska = (paramsp,y, sk), pka

(pammsBM, pka z = 6(9, g)'yn+1)’ and statey = (U7 g1 = g’Y17 s 7gn:g’y”7gn+2 =
n+2 2n
g7 ,...,92n = g7 ). Then a correct accumulator always has a value accy =

Hjevgn_l,_l_j. Moreover, for each i € V with up-to-date witness wit; = (w =

H%; n+1—j+i, i, g;) the following equation holds:

ntl—j+i
e(gi, accy) _ e(g,g)=iv 7 — (g g)vnﬂ _.
€lg,w) (g, g ’

Security. Suppose there exists an adversary A that breaks the security of our ac-
cumulator. We show how to construct an algorithm B that either forges the signa-
ture scheme used to sign accumulated elements or breaks the n-DHE
assumption.

Algorithm B has access to a signing oracle O, and obtains as input the
corresponding signature verification key pk, the parameters of a bilinear map
paramsgy = (¢, G, Gr,e,g), and an instance of the n-DHE assumption (g1, ...,
GnsGni2, -+ gon) € G?"~ 1. B provides A with pka = (paramspu,pk,z =
e(g1,9n)), accyg = 1 and stateg = (0,91, .., gns Gnt2, - - - , g2n)- The oracle queries
of the adversary are answered as defined in the game except that O, is called
for creating the signatures.

Given an adversary that can compute (7, wit;) such that the verification suc-
ceeds even though i ¢ V. We parse wit; as (w,;,§;). If g; does not corre-
spond to g; the adversary attacked the signature and &; is a signature forgery.
Otherwise we learn from the verification equation that

e(gi, acco) = e(g,w)z

and
e(g, H Int1-j+i) = €(g; Won+1) -
jev
This means that
[Lev gn+1—jti
gn+1 = .

w
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For i € {1,...,n}\ V, all g,+1—j4; are contained in statey and it is possible to
compute this value. This breaks the n-DHE assumption.

3.3 Efficient Proof That a Hidden Value Was Accumulated

It is often only required for a user to prove that she possesses a value that is
indeed contained in the current accumulator, or in other words, to prove mem-
bership of the current accumulator without revealing which value she possesses
(or which index 7 is assigned to her). In this section, we give an efficient protocol
that achieves this for our accumulator construction.

For the accumulator to be secure, the verifier needs to check that the value the
user claims to own, is one of g1, ..., g,. In the previous construction, g1, ..., gn
are authenticated either by making them public as a whole or by having each
one signed (in which case the user would provide the g; and the signature to the
verifier). However, using a public list would require the prover to either reveal
gi (which would violate privacy) or to prove that the g; which she claims pos-
session of, is a valid one. The latter, however, would require an involving proof
that would make the use of the accumulator inefficient. We therefore resort to
sign g; values and then require the prover to prove that she knows a signature
by the accumulator issuer on “her” g; without revealing neither the signature
nor the g; value. As such a proof needs to be efficient, this requires a special sig-
nature scheme. Since user never reveal the accumulated valued they are proving
possession of, it is possible to avoid signing g;||¢ as it is done in Section B2 This
allows for a more efficient signature scheme and proof system.

Prerequisites. We instantiate the signature scheme used for signing the g; with
a variant of the weakly secure Boneh-Boyen scheme [24]. Instead of a g; value we
sign v*. The authentic g; is a by-product of the signing process. For simplicity
we reduce the security of the accumulator proof directly to the n-HSDHE as-
sumptionﬁ The n-HSDHE assumption is the weakest assumption under which
we can prove our scheme. The n-HSDHE assumption is implied by the iHSDH
assumption of [38].

The signer (the accumulator issuer) picks a fresh u < G, secret key sk — Z,
and public key pk = g**. A signature consists of the two elements o; = g'/(*¥+7")
and u; = v and is verified by checking that e(pk - g;,04) = e(g, g).

Let pka = (paramspy, pk,z = e(guq)”ywrl)7 ska = (paramspn,y, sk) and

1 n n+2 2n
statey = (®7gl = g’y yeoeeyn = g’y ydn+2 = g’Y sy 92n = g’Y ) be as gen-
erated by the accumulator operations in the previous section. We also pick an
additional 7 «— G for commitments. The discrete logarithm of h and u with
respect to g must be unknown to the prover.

Proof of Knowledge. For arbitrary V C {1,...,n} and i € V, on input accy =
[l;cv 9n+1-i and the corresponding witness wit; = (w, 0y, u;,g;), where w =

Hf;, Gn+1—j+i, for value 7, the prover performs the following randomization:

3 We do not prove the signature scheme itself secure, but we refer to [38] for a similar
scheme.
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Pick at random r, 7/, 7", 7" open € Zy and computing G = gih", W = wh"',
D =g"horen S = oh™ and U = u;h"" respectively. Then the prover, proves

PK{(r,7",r" v open, mult, tmp) : D = g hoP A1 = DT”g*m“”fL*tm”/\

e(pk-g,S)_e A Nr”e~ 7 —multe~ r
e(g’g) - (pk g7 h) (hvh) (h,S) A
e(g7 a:CCV) —e 7 acc T.e T e(g,u) — ¢ ~ w T,e S\
(g, W)z = Cmacev)eQU/g iy o0 5= elhu)e(1/g, )}

Theorem 1. Under the n-DHE and the n-HSDHE assumptions the protocol
above is a proof of knowledge of a randomization value r that allows to de-
randomize G to a value g;, where i is accumulated in accy, i.e., i € V. The
proof of this theorem can be found in Section [A ]l

4 Efficient Revocation of Private Certificates

In this section we will show how to employ our accumulator to achieve efficient
revocation for schemes where users get some form of certificate and then later
can use these certificates in an anonymity protecting way. Such schemes include
group signatures, anonymous credential systems, pseudonym systems, anony-
mous e-cash, and many others. Most of these schemes work as follows. In a first
phase an issuer provides the user with a signature on a number of messages.
Then, in a second phase the user convinces the verifier that 1) she owns a signa-
tures by the issuer on a number of messages and 2) that these messages satisfy
some further properties that are typically dependent on the particular purpose of
the scheme. Based on this observation, Bangerter et al. [12] give a cryptographic
framework for the controlled release of certified information. They also show how
different applications (such as the ones mentioned above) can be realized. Thus,
they basically generalize the concepts of anonymous credentials, anonymous e-
cash, and group signatures into a single framework. We therefore just show how
their framework can be extended with revocation to provide this features for
all these applications. From this it will become clear how to extend particular
schemes (e.g., the anonymous credentials and group signatures [I6J33]) with our
revocation mechanisms.

More precisely, Bangerter et al. employ special signature protocols, called CL
signatures [39], for issuing private certificates to users. A private certificate ()
consists of attributes and a signature over the attributes much alike a traditional
certificate, only that a more powerful signature scheme is used, i.e.,

cert = (o, ma,...,my) with o = Sign(mq, ..., my; skr) . (1)

Let (skr, pkr) < lssuerKeygen(1%) be the certificate issuer’s keypair. The frame-
work supports two types of protocols: 1) an interactive certificate issuing protocol
ObtainCert that allows to obtain a signature on committed values without reveal-
ing these values and 2) efficient zero-knowledge proofs of knowledge of signature
possession.
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Let (m1,...,m¢) denote a list of data items and H C L = {1,...,¢} a sub-
set of data items. Using the first protocol, a user can obtain a certificate on
(m1,...,myg) such that the issuer does not learn any information on the data
items in H, while it learns the other data items, i.e., L \ H.

The private certificates of a user remain private to the user, that is, they are
never released (as a whole) to any other party: when using (showing) certificates
for asserting attribute information, the user proves that she knows (has) certifi-
cates with certain properties. The user may release certain attributes, while only
proving the knowledge of the rest of the certificate:

PK{(o,m1,...,me) : 1 = VerifySign(o,my,...meg,mp41,...,me; pkr) Ao} .
In the above proof only the attribute values of my 1 to my are revealed.

Certificate revocation. We now extend the above framework with certificate re-
vocation as follows. Let V' be the set of valid certificates for an epoch with epoch
information epochy,. A certificate is assigned a unique identifier ¢ (which will be
embedded into it as one of the attributes) and a witness wit;. We require that
the user can prove to a verifier that she possesses a non-revoked certificate only
if ¢ € V. This is achieved by having the user prove that the identifier embedded
into her credential is a valid one for the current epoch. Thus, before engaging
in a proof, the user needs to update her witness and both parties (the user and
the verifier) need to obtain the most up-to-date epoch information epochy, for
V. The user can either update the witness herself, or just retrieve the currently
valid witness from a witness update entity. Indeed, a witness update computa-
tion does not require knowledge of any secret and can be performed by untrusted
entities (e.g., by a third party or a high availability server cluster at the issuer).
In particular, those entities are only responsible for computing user witnesses
according to the current epoch information. Misbehavior by such entities would
lead in a denial of service (the verification algorithm would reject, but would not
break the security of the system). Also note that a witness update requires a
number of multiplications that is linear in the number of elements added to or
removed from the accumulator, hence providing such an update service to users
is feasible (one could even hold all users’ witnesses in main memory).

More formally, a certificate revocation system for the certification frame-
work consists of updated IssuerKeygen and ObtainCert protocols, new algorithms
UpdateEpoch and UpdateWitness for managing revocation, and a zero-knowledge
proof system for a new predicate VerifyEpoch that allows to prove possession of
a witness wit;:

IssuerKeygen(1*,n) creates the issuer key pair (skr, pkr), the epoch information
epochy, and statey for issuing up to n certificates.

ObtainCert(U(pkr, H,{m;};en),Z(skr, H,{m;}jer\#, epochy, statey)) allows a
user to obtain a private certificate cert; from the issuer. The issuer com-
putes and publishes the user’s witness wit;, and updated epoch information
epochy g5y and stateyyqy-
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UpdateEpoch(V, staters) outputs epoch information epoch,, if V- C U. Otherwise
it outputs L.

UpdateWitness(wit;, epochy,, statey) outputs an updated witness wit} if V C U.
Otherwise it outputs L.

A user who knows a certificate cert; and a corresponding up-to-date witness
wit; can prove, to a verifier, possession of the certificate and its validity for the
current epoch using the new predicate VerifyEpoch as follows. The user’s secret
input is cert;. The common input of the protocol is the issuer’s public key pkr,
the epoch information epochy,, and a specification of the proof statement (this
includes the information revealed about the certificate). In the example below
the user chooses to keep the first £ messages secret while he reveals the rest of
the messages.

PK{(o,m1,...,me, i, wit;) : 1 =VerifySign(o,m1,...mg,me 11, ..., mye,i; pkr)A
1 =VerifyEpoch(i, wit;; epochy,, pkr)} .

Using the Bangerter et al. framework [12], it is not hard to extend this proof or
combine it with other proof protocols given therein.

4.1 Adapted Signature Scheme for Accumulated Values

As described above, a user would have to prove that the value 7 encoded into her
credential is also contained in the current accumulator. However, the accumulator
construction as given in the previous section does not allow one to accumulate ¢
directly but only g; = §7". Now, instead of introducing a mapping of i to g; (and
including this in our proofs which would make them inefficient), we are going to
make the mapping implicit by including g; into the credential. Thus, the g; values
will be used both in the private certificate and the accumulator to represent the
certificate id 4. This requires that we extend the signature scheme in Section
to allow verification without knowing the secret exponent ~*:

1. The signer creates g, h, ho, h1, ..., he, hey1 < G and creates keys z € Z, and
y = h".

2. Next, the signer publishes a list (g1 = ¢7,...,9, = g7 ) that he allows in
signatures.

3. The signer picks random ¢,s < Z; and then computes the signature as
(0= (ol - B gihiy ) e, ).

4. A signature (o, ¢, s) on messages myq,...,my,§; is verified by checking that
gi is in the list of g; values and that e(o, yh¢) = e(ho(]_[ﬁ:1 h;”-f)gi i)
holds.

We note that the check that g; is in the list of g; values as prescribed in the last
step will later on be replaced by a signature/authenticator on g; as done for the
accumulator in Section

It is straightforward to reduce the security of this modified signature scheme
to the original one with ¢ + 1 messages as the signer knows the “messages” '
encoded by the g;. We omit the details here.
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4.2 Construction

IssuerKeygen(1*,n). Run BMGen(1*) to generate the parameters paramsgy =
(¢,G,Gr,e,g) of a (symmetric) bilinear map e : GxG — Gr. Pick additional
bases h7h0,...,hg+17ﬁ7u — G and z,sk,y «— Z; and compute y = h”
and pk = g“H Compute g1, ..., Gns Gni2, -, Gon, Where g; = ¢, and z =
e(g,9)"".

_ Output (skr, pkr) = ((paramspur, x, sk,v), (paramspur, y, b, ho, - - ., hey1,
h,u, pk,z)), epochy = (accy = 1,0), and stateg = (0, g1, -..; Gns Gnt2, - G2n)-

ObtainCert(U(pkr, H{m;}jcr), Z(skr, H,{m;} jc1\u, epochy, statey). The user

runs the following protocol to obtain a certificate cert; from the issuer:

’ * _ mjy s
1. The user chooses a random s’ € Zj, computes X = H]EH h; 7 hiyq, and
sends X to the issuer.

2. The user (as prover) engages the issuer (as verifier) in the following proof

PE{{m;}jen.s): X = [] hJVhi\1}
JjeEH

which will convince the issuer that X is correctly formed.
3. The issuer parses epochy as (accy, V) and statey as (U, g1, - -, Gn, Gn+2,
-+ g2n)- He then computes epochy ;3 = (accy - gny1-i, V U {i}) and
stateyugy = (U Ui}, 91,05 Gns Gni2s - -5 92n)
4. The issuer chooses random ¢, s” € Z; and then computes the signature
o= ((HjeL\H h;nj )Xgi zll)l/(z—&-c)_
5. The issuer computes w = H;;S, Intl—jti> O3 = gl/(S’“Jﬂi)7 and u; = u’
and sets wit; = (o4, u;, gi, w, Vu{i}).
6. The issuer sends (o, ¢, s”, {m;}jcr\m, i, 1) to the user and outputs wit;,
epochy gy, and stateyygiy-
7. The user verifies the certificate gotten and outputs cert; = (o,¢,my, ...
me, gi,s =8 + 5" 1).
UpdateEpoch(V, statey) checks whether V' C U and outputs L otherwise. The
algorithm creates epochy, for proving possessions of cert;, i € V. Let accy =
[Licv 9n+1—4, output epochy, = (accy,V).

UpdateWitness(wit;, epochy,, statey) aborts with L, if V' ¢ U. Otherwise it parses

I gnt1-j+i
. jeV\V,
wit; as (o, w4, gi, w, Viy). Let w’ = w’ 1—} v

JEVw\V

9

. The algorithm outputs

In+1—j+i

o /
wit; = (04, u4, gi, w', V).

4 Note that the discrete logarithms of g, h, h and w with respect to each other are
mutually unknown.

5 Both epochy, (;y and stateyy iy could be signed by the issuer to prevent proliferation
of fake accumulators.
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Proof protocol. We now show a protocol that allows a user to prove possession
of an unrevoked (and updated) credential cred; = (o, ¢, m1,...,my, g;, $,4) using
wit; = (o4, gi, Ui, w, Vi, ). The common input of the protocol is the issuer’s public
key pkr, the epoch information epochy,, and a specification of the proof statement
(this includes the information revealed about the certificate). In the example
below the user chooses to keep the first £/ messages secret while he reveals the
rest of the messages.

The user (as prover) picks p, p/,r, 7, 7", 7" «— Z,, and picks opening open,
open’ — Z, to commit to p and r respectively. He computes commitments
C = hPhore" D = g"h°?e"" and blinded values A = oh?, G = g;h", W = wh",
S =o;h"", and U = u;h"". The user sends C, D, A, G, W, S and U to the verifier
and engages the verifier in the following proof:

PK{(c, p, open, mult, tmp, my, ..., me, s,r,open’, mult', tmp’, v’ v v :
C = hpﬁopen Al= Cchfmultﬁftmp A (1)
e(ho - Tlj_p iy h7 -G 1) .
- =e(A h)-e(h,h)" 2
e (AL )" e(h.h) @)

¢

ce(hyy) " - e(h, )™ - T ehy, ) ™™ - e(hera, )N

j=1
o) ehvacer e/ 0
D :grilopen' Al= ch—mult'il—tmp' A (4)
TS oG,y ey el 5 ®
) = el e(1/o. by (©

This proof merges the proof of knowledge of Section 3.3 with a proof of knowledge
of an adapted signature as the ones described in Section d.1l The latter is similar
to the proof of knowledge of a signature in Section Special care needs to be
taken to bind the g; in the accumulator to the g; value in the adapted signature.

Theorem 2. Under the n-HSDHE and the n-DHE assumptions, the protocol
above is a proof of knowledge of an adapted signature on (mq,...,mg, g;) such
that i € V. The proof can be found in Section [A 1]

5 Conclusion and Discussion

In this paper we have introduced a novel dynamic accumulator based on bilinear
maps and have shown how it can be used to achieve efficient revocation in
privacy-preserving systems such as group signatures or anonymous credential
systems.
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Previous proposals require expensive computations for updating witnesses and
are not suitable for electronic token based systems with a large number of users,
as the ones that will soon appear with the introduction of e-ID’s, e-tickets and
alike. Our accumulator overcomes the aforementioned drawback introducing effi-
cient witness updates. In the envisioned system, at the beginning of each epoch,
the users retrieve their currently valid witness from an updating authority (as
the number of revocation per epoch is likely to be very large, the users will typi-
cally not be able to handle them). As updating a witness in our scheme requires
only a number of multiplication linear in the number of changes to the accumu-
lator (in particular, linear in [(V\ V) U(Vy\ V)|) a single authority (which not
necessarily needs to be the issuer) can keep the witness values for all users easily
up-to-date (and in main memory). This is a key feature that enables the adop-
tion of dynamic accumulators for revocation in privacy-preserving systems with
large number of users as, e.g., in the case of electronic driving license systems.
Although not necessary, there could even be several witness update entities, re-
sponsible for upgrading witnesses for groups of users. For example, in a national
e-ID’s systems, witness updates could be performed by per-county or per-city
witness update entity. The latter requires only public parameters and are only
responsible for correct computation of the witness updates for the users in their
group. Malicious behavior by one of the witness update entities, does not break
system security (recall that they only require public parameters) but can only
lead to denial of service. That is, if a witness is not correctly computed (not re-
flecting the latest changes in the accumulator) it would prevent a user to prove
validity of her credential. In this case, users can report to the issuing authority
to obtain a valid witness update and signal the misbehaving of the witness
update entity.
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A  Proofs

A.1 Proof of Theorem 1
It is standard to show that from a convincing prover of the protocol

PEA{(r,r", 7", 7", open, mult, tmp) :
D= grilopen Al = Dr//g_multfl—tmp A (7)

e(pk-G,S8) ok G o Ty, S
e(gg) — CWE-Gh)elhh) (h,S)" A (8)
e(G,accy) 5 N Ny
g W)z e(h, accy)e(1/g,h)" A (9)
R R
e(g.u) — /g, by} (10)

one can with overwhelming probability extract values r, v/, v, r'”’, and mult such
that the Equations (@), (8), (I0) hold. From Equation (@) we learn through simple
e(ghfrlaccv)
e(g,Wh=r")
Gh~" corresponds to a g; in statey and ¢ € V. In this case the extraction was
successful. )

In the second case Gh™" corresponds to a g; in statey but i ¢ V. In this case
we can use a successful prover to break the n-DHE assumption. The reduction ob-
tains as input the parameters of a bilinear map paramsgy = (¢, G, Gr, e, g), and
an instance of the n-DHE assumption (g1, 92, .-, 9n, Gni2,--->g2n) € G*7L
It provides the prover with pka = (paramspuy,pk,z = e(g1,9n)), accy and
statey = (U, 915+ -+ 9nsGn+2,---,92n)- The reduction computes the additional
setup for the proof using a fresh sk. Given a successful prover it can extract r,
r', ", v, and mult such that

transformation that = z. We distinguish three cases: In the first case

e(Gh™", accy) = e(g,Wfl_r/)z

and o
e(g, H Inti—jt+i) = e(g, Wh™" gnt1) .
jev
This means that
- Hjev In+1—j+i
T e
For i € {1,...,n}\ V, all gn41—;4+; are contained in statey and it is possible to

compute this value. This breaks the n-DHE assumption (Consult also the proof
in Section B2).
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In the third case Gh~" does not correspond to a g; in statey. We will show
that we can use such a prover to break the dedicated signature scheme (more
concretely the n-HSDHE assumption) using the remaining Equations (&) and (@).
The reduction works as follows. On input a HSDHE instance (g, g%, u, {g'/(*+7")
9" " Vict. s {97 Yieni2. 2n), the reduction uses the g7 to build statey and
the remaining values to construct the additional setup for the proof by setting
pk = ¢* (and implicitly sk = ).

After extracting r, v/, v, r""'| open, mult and tmp note that (based on Equa-
tion (@) mult = rr" and tmp = openr” (or one can compute log, h which

would in turn allow us to break n-HSDHE). After obtaining a giﬂ that does

not corresppnd to a value in {g”i}izl,,,n it is easy to see from Equation (8]
that e(pkGh™",Sh™"") = 1. Let ¢ = log, Gh™". then Sh™" = gt/ (=+e)  Sim-

ilarly from Equation (I0) we learn that p?ggb};}:ff,?) = 1. If Gh~" = g°, then

Uh~"" = u¢. This contradicts the n-HSDHE assumption.

As the malicious prover has no way to distinguish between the first or the
second reduction (as well as the real setup), we can randomly pick one of the
two reductions to break either the n-DHE or the n-HSDHE assumption (we only
loose a factor of 1/2 in the tightness of the reduction). O

A.2 Proof of Theorem 2

We extract the value from the above proof. From Equation (1) we know that if
mult # pc or mult’ # rr”, we can compute the discrete logarithm log, h. This
contradicts the DL assumption.

From Equations (3,4,5,6) and the security of the accumulator proof protocol
in Section 3.3 we know that Gh™" equals a g;, i € V, such that Wh™" is a
verifying accumulator witness for this value. Otherwise we break the n-DHE or
the n-HSDHE assumption. (The reductions would be set up in the same way as
in Appendix [A])

Now we consider Equation (2) of the proof. It asserts the prover’s knowledge
of values my, ..., mj} such that

VA L
e(ho-G- ([T 1)+ C TT 5). e )’ - el g)* - elhas o) =
e(A,y)e(A, g)° - e(h,g)" -

Here we have made use of the relation mult = pc. By simplifying this equation
further we obtain

A4 14
etho- [Th77 - TI R - hewa®-G/h",g) = e(A/hP, yge) .
j=q = +1

This shows that (A/7, ¢, 5) is a valid adapted signature for (ms,...,me,§7"). O
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