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Abstract— Wireless Sensor Networks (WSNs) are susceptible to
a wide range of attacks due to their distributed nature, limited
sensor resources and lack of tamper-resistance. Once a sensor
is corrupted, the adversary learns all secrets and (even if the
sensor is later released) it is very difficult for the sensor to regain
security, i.e., to obtain intrusion-resilience. Existing solutions rely
on the presence of an on-line trusted third party, such as a sink,
or on the availability of secure hardware on sensors. Neither
assumption is realistic in large-scale Unattended WSNs (UWSNs),
characterized by long periods of disconnected operation and
periodic visits by the sink. In such settings, a mobile adversary
can gradually corrupt the entire network during the intervals
between sink visits. As shown in some recent work, intrusion-
resilience in UWSNs can be attained (to a degree) via cooperative
self-healing techniques.
In this paper, we focus on intrusion-resilience in Mobile Unat-
tended Wireless Sensor Networks (µUWSNs) where sensors
move according to some mobility model. We argue that sensor
mobility motivates a specific type of adversary and defending
against it requires new security techniques. Concretely, we
propose a cooperative protocol that – by leveraging sensor
mobility – allows compromised sensors to recover secure state
after compromise. This is obtained with very low overhead and
in a fully distributed fashion. We provide a thorough analysis
of the proposed protocol and support it by extensive simulation
results.

I. INTRODUCTION

Many current and envisaged applications for Wireless

Sensor Networks (WSNs) involve data collection in remote,

inaccessible or hostile environments, such as deserts,

mountains, ocean floors and battlefields. A multitude of

sensors might be deployed within a certain area and their

activity is usually monitored and managed by a powerful

trusted entity, commonly referred to as the sink.

Security in WSNs presents several well-known challenges

stemming from all kinds of resource constraints of individual

sensors. However, resource limitations is not the main

challenge in designing security techniques for WSNs. It is

lack of ubiquitous (inexpensive) tamper-resistant hardware

that makes sensor compromise a real threat. Some recent

results (e.g., [1], [2]) showed that commodity sensors can be

easily corrupted. Once a sensor is corrupted and all of its

secrets are exposed, any cryptographic protocol ceases to be

effective.

Based on the time of corruption, we can view the security

state of a given sensor as a sequence of three epochs: (1) time

before corruption; (2) time during corruption; and (3) time

following corruption. Nothing can be done about security in

epoch 2 as the adversary controls the sensor, while enforcing

security in epochs 1 and 3 requires forward and backward

secrecy, respectively. Informally, a cryptographic protocol

is forward secure if exposure of secret material at a given

time does not lead to compromise of secrets for any time

preceding compromise. Whereas, a cryptographic protocol is

backward secure if compromise of secret material at a given

time does not lead to compromise of any secrets to be used

in future.

It is well-known that forward secrecy can be easily obtained

by periodically evolving a secret (e.g., a key), using a

one-way function. If we assume that time is divided in rounds

and let K0 be an initial secret, the secret for round r ≥ 1
(Kr) is computed as H(Kr−1), where H(·) is a one-way

function. Hence, if the adversary learns secret Kr, it cannot

compute any secrets used in prior rounds. However, backward

security is much more challenging, since knowledge of Kr

allows the adversary to compute secrets for future rounds

(any Kr′

for r′ > r) by mimicking the secret evolution

procedure. Note that this is possible even if the adversary is

no longer in control of a given sensor in round r′. Backward

secrecy would be trivial to obtain if each sensor had a true

random number generator (TRNG). Because a TRNG yields

information-theoretically independent values, even if the

adversary learns many (but not all) TRNG outputs, it cannot

compute the missing values, whether they correspond to the

past or to the future. Unfortunately, TRNGs are not found

on commodity sensors and not expected to be available

for the near future. An alternative to per-sensor TRNGs

is the presence of a trusted third party; this is assumed in

key-insulated schemes [3], [4]. In such schemes, forward

and backward security is achieved by having end-devices

evolve their secrets in cooperation with a trusted third party,

called a base. Unless both the end-device and the base are

compromised at the same time, per-round keys are insulated.

Key-insulated schemes are well-matched for WSNs with

a constantly present sink, where the latter acts as a base.

However, in Unattended WSNs (UWSNs), the sink visits the

network infrequently, which rules out key-insulated schemes.

This challenge forms the premise for our work in this paper.

Contributions: We investigate collaborative intrusion-

resilience in µUWSNs where sensors migrate within a

fixed deployment area. Assuming a stationary adversary
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that controls a portion of the deployment area, sensors take

advantage of mobility and cooperation with peers to regain

security even after having been corrupted by inadvertently

wandering into the area under adversarial control.

To analyze the proposed protocol, we use a spherical

deployment area, which makes it easy to ensure uniform node

distribution. However, our approach is generic and applicable

to most geometric shapes and surfaces.

Using both analytical and simulation results, we show that

the proposed protocol provides strong security (i.e., intrusion-

resilience via secret state recovery) without any trusted third

parties or secure hardware.

Organization. Next section surveys related work in the area

and Section III introduces the mobility and the adversarial

models. Section IV presents the new protocol to achieve

intrusion-resilience. The analysis of the protocol, for each of

the considered mobility models, is provided in Section V,

where extensive simulations support the analytical findings.

Discussion follows in Section VI. Finally, Section VII reports

some concluding remarks.

II. RELATED WORK

Some prior work has considered key exposure following

sensor compromise. Dutta, et al. [5] proposed a constant

storage self-healing protocol for WSNs. Sensor key update

uses a polynomial-based secret sharing scheme, performed

with the help of the sink. The sink periodically broadcasts

information to allow non-revoked sensors to update their

current session key. At any time, sensors can be revoked and

prevented from learning keys of any sessions after revocation.

Since this protocol relies on the constant presence of a sink,

it is not applicable to UWSNs.

WHISPER [6] provides both backward and forward secrecy

for keys shared between any two sensors. Session keys are

computed from two secrets, provided by each party, i.e., the

key for session r between sj and sq is computed as Kr
jq =

F
(

H(Kr−1
j ),H(Kr−1

q )
)

, where Kr−1
j and Kr−1

q are sj and

sq secrets for session r − 1 and F (·) and H(·) are suitable

hash functions. The scheme is secure as long as the adversary

does not compromise both sj and sq. This assumption does not

hold in UWSNs as their unattended nature allows the attacker

to gradually compromise some (even all) sensors between

successive sink visits.

In the last two years, UWSNs have become subject of some

attention. The initial work [7] introduced the UWSN scenario,

defined the mobile adversary and investigated simple tech-

niques to counter attacks focused on erasing specific data.

This was later extended [8] to include the case where the

adversary’s goal is to indiscriminately erase all sensor data.

Another recent result [9] introduced simple cryptographic

techniques to prevent the adversary from recognizing data that

it aims to erase. Sensor cooperation to achieve self-healing in

stationary UWSNs is explored in [10] and [11].

Recently, mobile WSNs have began to attract attention because

of the advantages that mobility brings to sensing applications

[12]. If sensors move, the network can guarantee optimal area

coverage, even if precise sensor deployment is unfeasible (e.g.,

because of hostile or inaccessible conditions of the deployment

area) [13]. Also, mobility helps solve network connectivity

problems caused by sensor failures and allows sensors to

adapt their sampling power to respond to precise events [14].

Moreover, mobile sensors can extend sensor lifetimes bringing

energy to sensors with depleted batteries [15]. Finally, mobility

is currently being investigated as a means to detect sensor

capture attacks [16], [17] and [18].

III. SYSTEM MODEL

We now describe the network environment and the adver-

sarial model.

A. Network Environment

We consider a network deployed over a spherical surface.

The main reason for choosing it is that it is easy to achieve

uniform coverage over a spherical area with random mobility

models [19]. Another reason is that random mobility models

over non-spherical surfaces exhibit high variability in the av-

erage number of neighbors [19]. The latter is a key parameter

for analyzing the effectiveness of our approach and a sphere

is likely the most suitable area for our purpose. However, we

stress that the shape of the deployment area’s surface is not the

focus of our work. Our techniques can be applied to µUWSN
deployed on any fixed-area surface.

The envisioned µUWSN includes N sensors uniformly dis-

tributed over a spherical region of radius ρ with surface area

S. Let N = {s1, . . . , sN} be the set of all sensors. At initial

deployment, sensor sj position is cp0
j .

Time is divided in rounds and all sensors’ clocks are loosely

synchronized, e.g., via [20]. Round length can be arbitrary;

we assume that it reflects a single acquisition of data from

the environment, i.e., sensors obtain measurements once per

round, that is, at round r sensor sj obtains data dr
j . Each sensor

has enough storage to accommodate O(v) data items.

Sensors have a common one-way hash function H(·) used as

a pseudo-random number generator (PRNG). Each sensor has

a unique random secret seed used to initialize the PRNG; this

seed is chosen by the sink and loaded onto each sensor upon

each sink visit. We use K0
j to denote the initial seed of sj .

We use notation X
y
←−
$

Z to denote a sensor using its PRNG

to generate y distinct elements from Z and to assign them to

X .

The sink is a trusted party that visits the µUWSN with certain

frequency which has an upper bound of v – the maximum

number of rounds µUWSN remains unattended. Upon each

visit, the sink obtains collected measurements from every

sensor, erases sensor memory, provides a fresh initial secret

seed for the PRNG and resets the round counter to 1.

We assume that each collected data item is encrypted sepa-

rately, using the sink’s public key PK, known to each sensor.

Although, in the past, public key encryption was shunned

by the sensor security community because of its high cost,

recent developments make public key encryption feasible on

commodity sensors [21], [22]. It might not be obvious why we
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are using public key encryption when symmetric encryption is

cheaper in all respects. The reason for using public key is that

it allows the sink to seamlessly decrypt anything that sensors

encrypt (for it ) in any round. (As discussed below, the security

is based on the use of secret padding or randomizers [23] and

not on the mere use of public key encryption). In contrast, if

we were to use symmetric encryption, it would be quite hard

(indeed, sometimes even impossible) for the sink to decrypt

data. This topic is discussed in detail in [9], [10] and [24].

In practice, details of data encryption depend on data size.

If data (along with randomized padding) fits within a single

public key encryption block (e.g., 160 bits for ECC or 1024
bits for RSA), then public key encryption suffices. However,

if data is too long, hybrid encryption becomes necessary.

This entails encrypting data using a symmetric encryption

algorithm (e.g., AES) with a one-time random key Kr
j (where

j corresponds to sj and r is the current round). Then, Kr
j is

itself encrypted using the sink’s public key PK.1 If hybrid

encryption is used, security is determined by the secrecy of

Kr
j . Whereas, if pure public key encryption is used, security

is based on the secrecy of randomized padding2, which, for

convenience, we also refer to as Kr
j . Regardless of how it is

used, Kr
j is obtained from sj’s PRNG. To abstract away from

the specifics, we use EPK(Kr
j , sj , r, d

r
j) to denote ciphertext

of dr
j produced by sj at round r.

Sensors are free to move over the deployment area according

to a network-wide mobility model. At round r, sj moves to a

new point cpr
j on the sphere, obtains data dr

j and encrypts it,

as described above. We consider two mobility models:

• Random Jump Model: each sensor sets its speed so it

can reach any point of the sphere in one round. Starting

with round r = 1 and initial position cp0
j , sj chooses a

random point wpr
j and moves there atomically.

• Random Waypoint Model: all sensors move with the

same constant speed and can cover a distance m in a

single round. At round 1, sj at position cp0
j chooses

a random point wp1
j and gradually moves there in

⌈

Do(cp0

j ,wp1

j )

m

⌉

rounds, where Do(cp0
j , wp1

j ) is the or-

thodromic distance between cp0
j and the waypoint wp1

j .

Once sj reaches wp1, it picks a new waypoint and starts

moving towards it, etc..

It is worth noticing that increasing m the Random Waypoint

tends to the Random Jump, but a detailed analysis on the

influence of the step size m is not the goal of this paper.

However, these two models provide uniform coverage of the

sphere by randomly selecting the latitude θ and the longitude

φ of waypoints, according to the “trig” method [25].

Algorithms 1 and 2 show the pseudocode run by each

sensor sj , at any round r. In Algorithm 2, the function

Move(cp, wp,m) computes the next position of a sensor,

1We emphasize that sensors do not have their own public/private keys and
do not perform any public key decryption or any other operation, apart from
encryption with PK, i.e., there is a single public key in the entire network.

2Note that we can not rely on the secrecy of the collected data; it might
be predictable or be drawn from a small set of possible values.

at distance m from the previous position cp, towards the

waypoint wp.

Algorithm 1: RANDOM-JUMP()

/* Generate a new random waypoint and move to it

*/

cp.φ
1
←−
$

[−π, π]

rnd
1
←−
$

[−1, 1]

cp.θ = 1
π

arccos(rnd)
return(cp)

Algorithm 2: RANDOM-WAYPOINT(cp,wp,m)

let cp be the current position of the sensor

let wp be the current waypoint of the sensor

let m be the step length

/* If waypoint wp is reached, generate new

waypoint */

if (cp == wp) then

wp.φ
1
←−
$

[−π, π]

rnd
1
←−
$

[−1, 1]

wp.θ = 1
π

arccos(rnd)

/* Move towards wp with step of length m */

cp = Move(cp, wp,m)
return([cp, wp])

Each sj has a circular communication area Ss, with radius

ρs. At round r, sensor sj can communicate with sp if

Do(cpr
j , cp

r
p) ≤ ρs, i.e., sp ∈ B(sj , r), where B(sj , r) is

the set of neighbors of sj at round r. Let Br = E[B(sj , r)]
be the mean number of neighbors of sj at round r. Since

sensors are always uniformly distributed on the sphere, this

yields B = Br = N · Ss

S
, r > 0.

B. Adversarial Model

The UWSN model considered in prior work assumes a

mobile adversary that migrates among different subsets of

compromised sensors. In our µUWSN setting, sensors are

mobile; thus, there is no incentive for the adversary to move,

i.e., it might as well be stationary and wait for sensors to

move to its controlled area. Albeit stationary, the envisioned

adversary differs from other adversarial models considered in

most prior WSN security literature. The latter is static in terms

of the number of sensors it corrupts, i.e., it compromises k out

of n sensor throughout the network lifetime. Our adversary,

however, is stationary with respect to the portion of the

deployment area it controls; but, the subset of compromised

sensors changes as nodes move into and out of the adversary-

controlled area.

ADV resides on a random point ap of the sphere and

has a circular corruption area Sa of radius ρa. The set of

compromised sensors at round r is {sj |D
o(ap, cpr

j) ≤ ρa}.

In other words, if sj winds up at distance smaller or equal to

ρa from ADV , we assume that it is corrupted, i.e., ADV
reads all sj’s storage/memory and listens to all incoming
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TABLE I

NOTATION SUMMARY.

S spherical region/surface
ρ radius of S
v maximum number of rounds

µUWSN stays unattended
r, r′ round indices

N = {s1, . . . , sN} set of sensors
N size of N

sj , sq generic sensors
si target sensor
dr

j data collected by sj at round r

Kr
i sj ’ secret state at round r

Kr
i key used by sj at round r

cpr
j sj ’s current position at round r

wpr
j sj ’s current waypoint at round r

Ss sensor communication area
ρs sensor communication range

Do(a, b) orthodromic distance between points a and b
B(sj , r) set of sj ’s neighbors at round r

B mean numbers of neighbors
ADV adversary

ap adversary position
ρa adversary compromise range
Rr set of red sensors at round r
Yr set of yellow sensors at round r
Gr set of green sensors at round r

and outgoing communications. Even if a corrupted sensor

moves away from the adversary-controlled area, ADV can

still compute its future secrets3.

We distinguish between a focused and a non-focused ADV . A

non-focused ADV ’s goal is to learn as many sensor secrets as

possible. In contrast, a focused ADV is interested in a specific

(target) sensor si and aims to learn its secrets. Any sensor can

be the target and its identity is only known to ADV .

We stress that ADV does not interfere with sensors’ behavior,

and can be described as a read-only adversary. This is in

order to stay undetected for as long as possible. Actually, any

modification to sensor code can be later discovered by the sink

using techniques in [26], [27]. A stealthy adversary can benefit

from repeated attacks.

Finally, we assume that ADV is aware of the network defence

strategy while neither sensors nor the sink know ADV ’s

location. In particular, there is no way to tell if a given sensor

has ever been corrupted.

Table I summarizes the notation used throughout the paper.

IV. THE PROTOCOL

In our protocol, forward secrecy is (predictably) obtained

with periodic secret evolution using a one-way function H(·).
To obtain backward secrecy, the main idea is for sensors to

serve as a source of randomness for their peers. A sensor

that is not currently corrupted (i.e., resides outside the area

controlled by ADV ), but whose state is known to ADV ,

can regain security and move to a new secure state if it

obtains at least one contribution of secure randomness from

a peer sensor whose secret state is not compromised. Our

3Since secrets are computed using one-way functions, ADV can mimic
the secret evolution step.

protocol leverages mobility to bring computationally secure

randomness to sensors whose state is compromised. Since

ADV ’s location is secret and we cannot distinguish between

compromised and non-compromised sensors, the protocol is

proactively run by all.

At round r, each sj runs Algorithm 3: it moves according

to the adopted mobility model, and, after reaching its new

position, broadcasts a random value based on its current PRNG

state. Then, sj obtains data from the environment and encrypts

it, as described in Section III-A. Next, it receives random con-

tributions from neighbors and uses those contributions, along

with its current secret state, to compute the next round secret.

Function keyGeneration(·) uses the sensor’s current secret

state to generate an encryption key.

Algorithm 3: intrusion-resilient Protocol

let cp be the current position of the sensor

let mov be the mobility model

/* Move according to a network-wide mobility

model */

switch (mov) do

case (RANDOM-JUMP)
cp = RANDOM-JUMP(cp)

case (RANDOM-WAYPOINT)
[cp, wp] = RANDOM-WAYPOINT(cp, wp,m)

/* Pick a new secret */

t
1
←−
$

$

/* Broadcast the new secret to neighbors/peers

*/

broadcast(t)
/* Sense data */

Obtain dr
j

/* Generate a new key from secret state */

Kr
j = keyGeneration(Kr

j )
/* Encrypt and store current data */

Store EPK(Kr
j , dr

j , r, sj)
/* Initialize peer contributions vector */

Rr
j = [∅]

c = 0
/* Receive peer contributions */

while (roundT imer) do
Receive trp from sp

Rr
j [c] = trp

c = c + 1

/* Generate new secret state */

Kr+1
j = H(Kr

j ||R
r
j [0]|| . . . ||Rr

j [c − 1])
Delete Kr

j ,Kr
j

V. ANALYSIS

To support analytical findings with experimental results,

we developed a software simulator [28] for the spherical

deployment area. In all our simulations, the µUWSN contains

N = 500 sensors moving over a sphere of radius ρ = 105. The
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orthodromic distance covered with a step is m = 2, 000 for

the Random Waypoint Model. Sensor transmission range ρs

is chosen such that Ss

S
ranges in [10−6, . . . , 10−2]. In fact,

as the number of neighbors is central to cooperative self-

healing, sensor transmission range dramatically influences the

performance of proposed protocol. Neighborhood size can be

tuned either via sensor density or via sensor communication

range: we chose to fix the former and vary the latter.

ADV is randomly placed on the sphere and its corruption

range ρa is chosen such that its compromise area Sa is 0.05,

0.1 and 0.2, of the spherical surface, respectively.

At any time during the protocol, the set of sensors can be

partitioned into three distinct groups: red, yellow, or green,

defined as follows.

• Red (Rr): a sensor is red if it is currently within ADV ’s

corruption area Sa

• Yellow (Yr): a sensor is yellow if it is not in Sa, but

ADV still knows its state (i.e., keys and PRNG state).

• Green (Gr): a sensor is green if its current secrets are

unknown to ADV . This is because either it has never

been within Sa or has been “healed” via the proposed

protocol.

Figure 1 shows our scenario: (1) a green sensor remains green

until it moves at distance less or equal than ρa from ADV ; (2)
a red sensor cannot become green without becoming yellow

first; and (3) a yellow sensor can become green only if it

receives at least one contribution from a green sensor. Figure

2 depicts the state transition diagram.

Fig. 1. Reference Scenario.

Fig. 2. State Transition Diagram.

Knowledge of sensor’s secrets allows ADV to perform

several attacks, ranging from sensor impersonation to

compromising confidentiality of sensed data. The goal of a

non-focused ADV is to maximize the set of red and yellow

sensors. Whereas, our intrusion-resilient protocol is designed

to maximize the number of green sensors.

A. Non-Focused ADV

To assess the effectiveness of the proposed intrusion-

resilience protocol against a non-focused ADV , we analyze

the number of red and yellow sensors at each round.

Let R, Y , and G be the mean number of red, yellow, and green

sensors, respectively. Hereafter, we assume the network to be

at steady state, that is Rr = R, Yr = Y, Gr = G, for some

r > 0. Since sensors are uniformly distributed on the surface,

the number of red sensors R is independent of the mobility

model and can be computed as:

R = N ·
Sa

S

The number of yellow sensors at round r can be computed as:

Yr = Yr−1 + Rr−1PRY − Yr−1PY R − Yr−1PY G

(1)

where PRY is the transition probability from red to yellow,

PY R is the transition probability from yellow to red state, and

PY G is the transition probability from yellow to green.

Since the network is at steady state, Eq.(1) becomes:

R · PRY − Y · PY R − Y · PY G = 0 ⇐⇒

Y · (PY R + PY G) = R · PRY ⇐⇒

Y = R ·
PRY

PY R + PY G

(2)

1) Random Jump Model: Each sensor chooses a random

point on the sphere and reaches it in one round. The probability

to become yellow being red can be computed as:

PRY = 1 −
Sa

S

The probability to become red being yellow can be computed

as:

PY R =
Sa

S
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The probability to become green can be evaluated as:

PY G = 1 − P{B(sj , r) ∩ G = ∅}

The probability that a yellow sensor sj has no green sensors

within its communication range can be approximated as:

P{B(sj , r) ∩ G = ∅} ≈

(

1 −
Sn

S − Sa

)G

The ratio Sn

S−Sa
can be rewritten as function of the mean

number of neighbors B, yielding:

PY G ≈ 1 −

(

1 −
B

N

)N−R−Y

(3)

Finally, Equation (2) can be rewritten as:

Y

(

Sa

S
+ 1 −

(

1 −
B

N

)N−R−Y)

−R · PRY ≈ 0

(4)

Figure 3 shows the simulation results and the theoretical

20

50

100

200

300

400
500
600

0.0001 0.001 0.01 0.1 1 10

R
e
d
 +

 Y
e
llo

w
 S

e
n
so

rs

Mean number of neighbours (B)

0.20
0.10
0.05

Fig. 3. Random Jump Model: simulation results and theoretical analysis.

analysis associated to the Random Jump Model. Errorbars

show quantiles 5, 50 and 95 related to the sum of yellow and

red (compromised) sensors, observed during the simulations.

Solid lines show the numerical solutions of Eq. (4). When

the number of neighbors is high (B ≥ 1), the number of

compromised sensors can be approximated as 2 · R, that is,

at each round there are R red sensors and R yellow sensors

that were red at previous round and just came out from the

adversarial region. Decreasing the mean number of neighbors,

by decreasing the communication range, increases the number

of compromised sensors, until no green sensors are left.

2) Random Waypoint Model: In this model, PRY can

be computed if we approximate the corruption area of the

adversary with a circle Sa of range ρa, as shown in Fig. 4.

The error introduced by this approximation can be considered

negligible as long as ρa ≪ ρ. In the following, we denote

with O and Sa the adversary position and the adversary area

of radius ρa, respectively. Moreover, O′ is the position of the

sensor sj at round r (i.e., cpr
j ≡ O′) and D is the set of

points at distance m from O′, that is, the set of points the

sensor could move to in the following round (i.e., cpr+1
j ∈ D,

with cpr+1
j − cpr

j = m). PRY can be computed as:

PRY = P{cpr+1
j ∈ Dext ∧ cpr

j ∈ Am}+

P{cpr+1
j ∈ Dext ∧ cpr

j /∈ Am}

but P{cpr+1
j ∈ Dext ∧ cpr

j /∈ Am} = 0, that is, the sensor

cannot exit from ADV because m is not sufficiently large.

This yields:

PRY = P{cpr+1
j ∈ Dext ∧ cpr

j ∈ Am}

= P{cpr+1
j ∈ Dext

∣

∣

∣
cpr

j ∈ Am} · P{cpr
j ∈ Am}

(5)

The probability P{cpr
j ∈ Am} that sj belongs to the circular

ring Am can be computed as:

P{cpr
j ∈ Am} =

πρ2
a − π(ρa − m)2

πρ2
a

≈
2m

ρa

The first term of Eq. (5) is:

P{cpr+1
j ∈ Dext

∣

∣

∣
cpr

j ∈ Am} =
E{Dext}

2πm
(6)

where E{Dext} is the mean value of Dext evaluated for O′ ∈
[ρa, ρa − m]:

E{Dext} =
1

m

∫ ρa

ρa−m

2 · β′(x) · m dx (7)

where β′(x) can be obtained by observing that ρa cos[β(x)] =
x+m ·cos[β′(x)], where x = OO′. If m ≪ ρa then β(x) ≃ 0
and cos[β(x)] ≃ 1, yielding:

ρa = x + m · cos[β′(x)]

β′(x) = arccos
(ρa − x

m

)

(8)

Combining Eq. (7) with Eq. (8), yields E{Dext} = 2m.

Finally, Eq. (6) can be re-written as:

P{cpr+1
j ∈ Dext

∣

∣

∣
cpr

j ∈ Am} =
1

π

This yields:

PRY =
2m

πρa

(9)

We split the evaluation of PY R in two distinct cases: (i) when

the number of neighbors is negligible (B ≪ 1); and, (ii) when

the number of neighbors is high (B ≥ 1). In the latter case,

we assume PY R as negligible since all sensors are healed just

after they come out from the adversarial region (PY G ≃ 1).

Therefore, we do not take into account those sensors that

choose their waypoint one step out from the adversarial region

and then come back into the adversary controlled area. In

the first case (B ≪ 1), we assume the number of green

sensors negligible. In fact, PY R > 0 means that a sensor can

reach its current waypoint and come back to the adversary

region without having been healed, i.e., the probability for a
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Fig. 4. Geometrical model for the evaluation of the probability PRY .

sensor to move within a green sensor communication range

is negligible. Considering Eq. (2), assuming G ≃ 0 and

consequently PY G ≃ 0, yields:

PY R = R
PRY

Y

Since N = G + Y + R, the above equation can be rewritten

as:

PY R = R ·
PRY

N −R
(10)

The probability PY G to become green from being yellow can

be computed as in the Eq. (3). Also in this case, the latter

is valid only if m ≥ 2 · ρs, otherwise it can be considered

as an upper bound for the probability to be healed (PY G).

Combining Eq. (9), Eq.(10), Eq.(3) and Eq.(2), yields:

Y

(

R · PRY

N −R
+ 1 −

(

1 −
B

N

)N−R−Y)

−R · PRY = 0

(11)

The three solid lines in Fig. 5 show the numerical solutions

of Eq. (11) as a function of B (mean numbers of neighbors)

and Sa

S
(the ratio between adversary controlled area and the

whole sphere). Errorbars show quantile 5, 50, and 95 related

to the sum of red and yellow sensors, experienced during the

simulations. When the number of neighbors is high (B ≥ 1),

the healing protocol cuts down the number of compromised

sensors to the red sensors only, that is, 25 (5% of 500), 50

(10% of 500) and 100 (20% of 500). Decreasing the number of

neighbors, by reducing the communication range, increases the

number of compromised sensors. In fact, the healing protocol

performs worse due to the fact that less random contributions

provided by green sensors are exchanged. When the number

of neighbors is low (B ≤ 10−3), the healing protocol can

be considered switched off (no contributions are exchanged),

therefore, the adversary eventually controls all the sensors.

3) Mobility models comparison: Table II summarizes the

probabilities for sensors to change their state. When the

number of neighbors is high (B ≥ 1), then PY R < PY G ≃ 1
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Fig. 5. Random Waypoint Model: simulation results and theoretical analysis.

in both mobility models, therefore almost all yellow sensors

are healed in one round. However, note that the number of

compromised sensors is highly dependant on the number of

sensors that leave the adversarial region in one round. In the

Random Jump Model, just a small fraction of the sensors that

are red at round r do not leave the adversarial area (that is,

do not become yellow) during next round (PRY ≥ 0.8). In the

Random Waypoint Model, the step is smaller and therefore

only few sensors exit the adversarial region (PRY ≤ 0.05).

As a result, when B ≥ 1, the number of compromised

sensors in the Random Jump Model is twice the number of

compromised sensors in the Random Waypoint Model. When

TABLE II

PROBABILITIES AND MOBILITY MODELS

Mobility model PRY PY G PY R

Random Jump 1 − Sa

S
≤ 1 −

(

1 − B
N

)G
Sa

S

Random Waypoint ≃ 2m
πρa

≤ 1 −
(

1 − B
N

)G
≤ R·PRY

N−R

B < 1, the Random Waypoint Model still guarantees better

performances in terms of number of green sensors. In fact,

while the adversary controls almost all the network in the

Random Jump Model when B ≃ 0.1, using the Random

Waypoint Model, the number of compromised sensors is just

half the network.

B. Focused ADV

Assume that ADV picks one of the sensors in the adversary

controlled area, namely si, and decides to monitor its secret

state even when si moves away from Sa. ADV will be able to

do so as long as si remains yellow. Hence, we are interested

in the time required to sensor si, once it has been corrupted,

to be healed by a green peer. In the following we analyze this

event, referred to as time to heal.

We assume si eventually moves to the adversary controlled

area and from that round on, we investigate the number of
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rounds si remains compromised, i.e., red or yellow. To provide

a theoretical analysis of the time to heal, we will use absorbing

Markov chains [29]. In particular, the states of the chain are

equivalent to the ones detailed in the above coloring scheme,

i.e., green, yellow, and red. We consider the green state of

the model depicted in Fig. 2 as the absorbing state of the

Markov chain, that is PGG = 1 and PGX = 0 for X �= G and

X ∈ {Y,R}. The 3×3 matrix M associated to the absorbing

Markov chain can be generated as:

M =

⎡

⎣

PRR PRY 0
PY R PY Y PY G

0 0 1

⎤

⎦

where PRY , PY R, and PY G can be computed as presented in

the previous sections, while PRR and PY Y can be computed

considering the fact that the sum of all the transition probabil-

ities related to each node in Fig. 2 must be equal to 1. Hence:

PRR = 1 − PRY , PY Y = 1 − PY R − PY G.

The matrix M can be partitioned as:

M =

[

Q A
0 I

]

where Q gives the probabilities of transitions between transient

states; A gives the probability of transition from transient state

to absorbing state; and, finally, I and 0 are the identity and

the null matrices, respectively. The expected number of times

that the process is in a compromised state can be computed

as:

D = (I − Q)−1 (12)

Vector D = [d1, d2] provides average absorbing times when

the chain starts from the red and the yellow state. Since we are

interested in the time between corruption and healing, (i.e., the

chain always starts from the red state), d1 represents the time

to heal. Figure 6 shows the time to heal experimented dur-
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Fig. 6. Time to heal as a function of the mean number of neighbors.

ing the simulations and its theoretical evaluation considering

Eq. (12). For both mobility models, the theoretical analysis

fits simulation results. It is worth noticing that the Random

Jump Model experiments shorter time to heal in respect to the

Random Waypoint Model. In particular, considering a high

number of neighbors (B ≥ 1), we observe that, according to

the Random Jump Model, a sensor needs at least 2 rounds

to move back into the green state: the first one is needed to

leave the adversarial region and to become yellow, while the

second one is required to be healed by a green neighbor. On

the contrary, using the Random Waypoint Model, the minimum

time to heal is almost 20 rounds. In fact, the ρa

m
ratio is almost

13. Therefore, the sensor must spend at least 13 rounds inside

the adversarial region before coming out of it. Moreover, note

that the sensor also needs few rounds out of the adversary

region before meeting a green peer. Indeed, the proximity of

the adversarial area is populated by yellow sensors mainly.

VI. DISCUSSION

The above analysis shows that the proposed protocol is

effective to guarantee intrusion-resilience in µUWSNs.

In particular, the two analyzed mobility models provides

complementary results. The Random Waypoint Model per-

forms better against a non-focused adversary, i.e., there are

less compromised sensors at any given round. The Random

Jump Model performs better against a focused adversary as

compromised sensors experience shorter time to heal.

An interesting feature of our protocol is that if the average

number of neighbors (tuned either via sensor density or sensor

transmission range) is high enough (B ≥ 1), the network

exhibits a self-healing property that allows sensors to regain

secret state as soon as they move away from the adversary-

controlled area. In this case, the surface controlled by ADV
plays a very small role – if we exclude red sensors, that are

proportional to Sa. This is because sensors cooperate; hence, a

key parameter in the performance of the proposed protocol is

the mean number of neighbors. In our simulations, we changed

B tuning sensor transmission ranges. In real deployment,

similar results can be obtained using shorter transmission

ranges. (That would save sensor energy, hence allowing the

µUWSN to operate longer.)

Intrusion-resilience is provided with minimal computational

overhead. At each round, a sensor broadcasts one message and

receives B messages, on average. It also runs two one-way

function operations and performs one public-key encryption

operation. In contrast with [10] and [11], the proposed protocol

involves lower communication overhead, since it does not rely

on routing, i.e., a sensor only communicate with its neighbors.

As stated earlier, our protocol leverages sensor mobility to

spread ”healing randomness” around the network. Since sensor

mobility is a built-in feature of µUWSNs, intrusion-resilience

comes at virtually no cost.

The protocol is also robust with respect to message loss

or sensor failure. As noted in [10], cooperative self-healing

with symmetric-key cryptography is not feasible if sensors

fail or message delivery is not guaranteed. Indeed, decryption

of sensors data would require the sink to synchronize with

sensors decryption keys. If sensors compute keys exchanging

secrets, the sink must be aware of each exchange of secret

that has occurred during its absence, which is not feasible in
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case of message loss or sensor failures. The use of public key

encryption (or hybrid encryption) allows the sink to decrypt

any ciphertext, no matter which messages were not correctly

received or which sensors failed during the sink absence.

VII. CONCLUSIONS

We proposed a distributed self-healing protocol that,

based on sensor mobility and one-hop communication, offers

intrusion-resilience in µUWSNs. The protocol has been

tested under two mobility models, assuming a spherical

deployment surface. Analytical results indicate that, under

the realistic adversarial model, the proposed protocol is both

highly effective and efficient for a wide range of network

parameters. For example, when the number of neighbors is

at least (roughly) one, the protocol minimizes the number of

nodes not under the control of the adversary. Our proposed

approach is evaluated via thorough analysis and extensive

simulations.
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